Shen, Y. F.; Yuan, D. H.; Yang, S. Z. Polynomial reproduction of vector subdivision schemes. (English) Zbl 1470.41010 Abstr. Appl. Anal. 2014, Article ID 104840, 10 p. (2014). Summary: We discuss the polynomial reproduction of vector subdivision schemes with general integer dilation \(m \geq 2\). We first present a simple algebraic condition for polynomial reproduction of such schemes with standard subdivision symbol. We then extend it to general subdivision symbol satisfying certain order of sum rules. We also illustrate our results with several examples. Our results show that such kind of scheme can produce exactly the same scalar polynomial from which the data is sampled by convolving with a finite nonzero sequence of vectors. MSC: 41A30 Approximation by other special function classes 42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems 65T60 Numerical methods for wavelets × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] Cavaretta, A. S.; Dahmen, W.; Micchelli, C. A., Stationary subdivision, Memoirs of the American Mathematical Society, 93, 453 (1991) · Zbl 0741.41009 · doi:10.1090/memo/0453 [2] Dyn, N.; Levin, D., Subdivision schemes in geometric modelling, Acta Numerica, 11, 73-144 (2002) · Zbl 1105.65310 · doi:10.1017/S0962492902000028 [3] Conti, C.; Zimmermann, G., Interpolatory rank-1 vector subdivision schemes, Computer Aided Geometric Design, 21, 4, 341-351 (2004) · Zbl 1069.41513 · doi:10.1016/j.cagd.2003.11.003 [4] Jetter, K.; Zimmermann, G., Polynomial reproduction in subdivision, Advances in Computational Mathematics, 20, 1-3, 67-86 (2004) · Zbl 1037.41003 · doi:10.1023/A:1025859224071 [5] Han, B., Vector cascade algorithms and refinable function vectors in Sobolev spaces, Journal of Approximation Theory, 124, 1, 44-88 (2003) · Zbl 1028.42019 · doi:10.1016/S0021-9045(03)00120-5 [6] Keinert, F., Wavelets and Multiwavelets (2004), Boca Raton, Fla, USA: Chapman & Hall/CRC, Boca Raton, Fla, USA · Zbl 1058.65150 [7] Plonka, G., Approximation order provided by refinable function vectors, Constructive Approximation, 13, 2, 221-244 (1997) · Zbl 0870.41015 · doi:10.1007/s003659900039 [8] Hormann, K.; Sabin, M. A., A family of subdivision schemes with cubic precision, Computer Aided Geometric Design, 25, 1, 41-52 (2008) · Zbl 1172.65308 · doi:10.1016/j.cagd.2007.04.002 [9] Dyn, N.; Hormann, K.; Sabin, M. A.; Shen, Z., Polynomial reproduction by symmetric subdivision schemes, Journal of Approximation Theory, 155, 1, 28-42 (2008) · Zbl 1159.41003 · doi:10.1016/j.jat.2008.04.008 [10] Conti, C.; Hormann, K., Polynomial reproduction for univariate subdivision schemes of any arity, Journal of Approximation Theory, 163, 4, 413-437 (2011) · Zbl 1211.65022 · doi:10.1016/j.jat.2010.11.002 [11] Charina, M.; Conti, C., Polynomial reproduction of multivariate scalar subdivision schemes, Journal of Computational and Applied Mathematics, 240, 51-61 (2013) · Zbl 1258.65023 · doi:10.1016/j.cam.2012.06.013 [12] Charina, M.; Romani, L., Polynomial reproduction of multivariate scalar subdivision schemes with general dilation [13] Li, S., Vector subdivision schemes in \((L_p(R^s))^r(1 \leq p \leq \infty)\) spaces, Science in China A: Mathematics, 46, 3, 364-375 (2003) · Zbl 1218.42018 [14] Chen, D.-R.; Jia, R.-Q.; Riemenschneider, S. D., Convergence of vector subdivision schemes in Sobolev spaces, Applied and Computational Harmonic Analysis, 12, 1, 128-149 (2002) · Zbl 1006.65153 · doi:10.1006/acha.2001.0363 [15] Strela, V., Multiwavelets: theory and applications [Ph.D. thesis] (1996), Citeseer [16] Han, B.; Mo, Q., Multiwavelet frames from refinable function vectors, Advances in Computational Mathematics, 18, 2-4, 211-245 (2003) · Zbl 1059.42030 · doi:10.1023/A:1021360312348 [17] Chui, C. K.; Lian, J.-A., A study of orthonormal multi-wavelets, Applied Numerical Mathematics, 20, 3, 273-298 (1996) · Zbl 0877.65098 · doi:10.1016/0168-9274(95)00111-5 [18] Han, B., Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets, Journal of Approximation Theory, 110, 1, 18-53 (2001) · Zbl 0986.42020 · doi:10.1006/jath.2000.3545 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.