Wang, Yuanheng; Shi, Huimin A modified mixed Ishikawa iteration for common fixed points of two asymptotically quasi pseudocontractive type non-self-mappings. (English) Zbl 1473.47045 Abstr. Appl. Anal. 2014, Article ID 129069, 7 p. (2014). Summary: A new modified mixed Ishikawa iterative sequence with error for common fixed points of two asymptotically quasi pseudocontractive type non-self-mappings is introduced. By the flexible use of the iterative scheme and a new lemma, some strong convergence theorems are proved under suitable conditions. The results in this paper improve and generalize some existing results. MSC: 47J25 Iterative procedures involving nonlinear operators 47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc. Keywords:modified mixed Ishikawa iterative sequence; asymptotically quasi pseudocontractive type mappings; strong convergence × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Goebel, K.; Kirk, W. A., A fixed point theorem for asymptotically nonexpansive mappings, Proceedings of the American Mathematical Society, 35, 171-174 (1972) · Zbl 0256.47045 · doi:10.1090/S0002-9939-1972-0298500-3 [2] Schu, J., Approximation of fixed points of asymptotically nonexpansive mappings, Proceedings of the American Mathematical Society, 112, 143-151 (1991) · Zbl 0734.47037 · doi:10.1090/S0002-9939-1991-1039264-7 [3] Takahashi, W.; Wong, N.-C.; Yao, J.-C., Attractive point and weak convergence theorems for new generalized hybrid mappings in Hilbert spaces, Journal of Nonlinear and Convex Analysis, 13, 745-757 (2012) · Zbl 1272.47068 [4] Kurokawa, Y.; Takahashi, W., Weak and strong convergence theorems for nonspreading mappings in Hilbert spaces, Nonlinear Analysis, Theory, Methods and Applications, 73, 6, 1562-1568 (2010) · Zbl 1229.47117 · doi:10.1016/j.na.2010.04.060 [5] Xu, H. K., Vistosity approximation methods for nonexpansive mappings, Journal of Mathematical Analysis and Applications, 298, 279-291 (2004) · Zbl 1061.47060 · doi:10.1016/j.jmaa.2004.04.059 [6] Sahu, D. R.; Xu, H.-K.; Yao, J.-C., Asymptotically strict pseudocontractive mappings in the intermediate sense, Nonlinear Analysis, Theory, Methods and Applications, 70, 10, 3502-3511 (2009) · Zbl 1221.47122 · doi:10.1016/j.na.2008.07.007 [7] Kim, J. K.; Sahu, D. R.; Nam, Y. M., Convergence theorem for fixed points of nearly uniformly L-Lipschitzian asymptotically generalized Φ-hemicontractive mappings, Nonlinear Analysis, Theory, Methods and Applications, 71, 12, e2833-e2838 (2009) · Zbl 1239.47055 · doi:10.1016/j.na.2009.06.091 [8] Chang, S. S., Some results for asymptotically pseudo-contractive mappings and asymptotically nonexpansive mappings, Proceedings of the American Mathematical Society, 129, 3, 845-853 (2001) · Zbl 0968.47017 · doi:10.1090/S0002-9939-00-05988-8 [9] Cholamjiak, P.; Suantai, S., A new hybrid algorithm for variational inclusions, generalized equilibrium problems, and a finite family of quasi-nonexpansive mappings, Fixed Point Theory and Applications, 2009 (2009) · Zbl 1186.47060 · doi:10.1155/2009/350979 [10] Klin-Eam, C.; Suantai, S., Strong convergence of composite iterative schemes for a countable family of nonexpansive mappings in Banach spaces, Nonlinear Analysis, Theory, Methods and Applications, 73, 2, 431-439 (2010) · Zbl 1226.47080 · doi:10.1016/j.na.2010.03.034 [11] Plubtieng, S.; Ungchittrakool, K., Approximation of common fixed points for a countable family of relatively nonexpansive mappings in a Banach space and applications, Nonlinear Analysis, Theory, Methods and Applications, 72, 6, 2896-2908 (2009) · Zbl 1203.47070 · doi:10.1016/j.na.2009.11.034 [12] Suzuki, T., Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory and Applications, 2005, 1, 103-123 (2005) · Zbl 1123.47308 · doi:10.1155/FPTA.2005.103 [13] Zeng, L.-C.; Yao, J.-C., Implicit iteration scheme with perturbed mapping for common fixed points of a finite family of nonexpansive mappings, Nonlinear Analysis, Theory, Methods and Applications, 64, 11, 2507-2515 (2006) · Zbl 1105.47061 · doi:10.1016/j.na.2005.08.028 [14] Marino, G.; Xu, H.-K., A general iterative method for nonexpansive mappings in Hilbert spaces, Journal of Mathematical Analysis and Applications, 318, 1, 43-52 (2006) · Zbl 1095.47038 · doi:10.1016/j.jmaa.2005.05.028 [15] Wang, Y.-H.; Xia, Y.-H., Strong convergence for asymptotically pseudocontractions with the demiclosedness principle in Banach spaces, Fixed Point Theory and Applications, 2012 (2012) · Zbl 1273.47087 · doi:10.1186/1687-1812-2012-45 [16] Wang, Y.-H.; Xuan, W. F., Convergence theorems for common fixed points of a finite family of relatively nonexpansive mappings in Banach spaces, Abstract and Applied Analysis, 2013 (2013) · Zbl 1343.47075 [17] Zeng, L.-C.; Yao, J.-C., Stability of iterative procedures with errors for approximating common fixed points of a couple of q-contractive-like mappings in Banach spaces, Journal of Mathematical Analysis and Applications, 321, 2, 661-674 (2006) · Zbl 1101.47058 · doi:10.1016/j.jmaa.2005.07.079 [18] Zeng, L.-C.; Tanaka, T.; Yao, J.-C., Iterative construction of fixed points of nonself-mappings in Banach spaces, Journal of Computational and Applied Mathematics, 206, 2, 814-825 (2007) · Zbl 1120.65075 · doi:10.1016/j.cam.2006.08.028 [19] Zeng, L. C.; Wong, N. C.; Yao, J. C., Convergence analysis of iterative sequences for a pair of mappings in Banach spaces, Acta Mathematica Sinica, 24, 3, 463-470 (2008) · Zbl 1153.47060 · doi:10.1007/s10114-007-1002-0 [20] Wu, X.; Yao, J. C.; Zeng, L. C., Uniformly normal structure and strong convergence theorems for asymptotically pseudocontractive mappings, Journal of Nonlinear and Convex Analysis, 6, 3, 453-463 (2005) · Zbl 1100.46008 [21] Ceng, L.-C.; Wong, N.-C.; Yao, J.-C., Fixed point solutions of variational inequalities for a finite family of asymptotically nonexpansive mappings without common fixed point assumption, Computers and Mathematics with Applications, 56, 9, 2312-2322 (2008) · Zbl 1165.49007 · doi:10.1016/j.camwa.2008.05.002 [22] Chidume, C. E.; Ofoedu, E. U.; Zegeye, H., Strong and weak convergence theorems for asymptotically nonexpansive mappings, Journal of Mathematical Analysis and Applications, 280, 2, 364-374 (2003) · Zbl 1057.47071 · doi:10.1016/S0022-247X(03)00061-1 [23] Zegeye, H.; Robdera, M.; Choudhary, B., Convergence theorems for asymptotically pseudocontractive mappings in the intermediate sense, Computers and Mathematics with Applications, 62, 1, 326-332 (2011) · Zbl 1228.47065 · doi:10.1016/j.camwa.2011.05.013 [24] Chang, S.-S., Some problems and results in the study of nonlinear analysis, Nonlinear Analysis, Theory, Methods and Applications, 30, 7, 4197-4208 (1997) · Zbl 0901.47036 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.