Jung, Soon-Mo; Rassias, Michael Th. A linear functional equation of third order associated with the Fibonacci numbers. (English) Zbl 1470.39066 Abstr. Appl. Anal. 2014, Article ID 137468, 7 p. (2014). Summary: Given a vector space \(X\), we investigate the solutions \(f : \mathbb{R} \rightarrow X\) of the linear functional equation of third order \(f \left(x\right) = p f \left(x - 1\right) + q f \left(x - 2\right) + r f(x - 3)\), which is strongly associated with a well-known identity for the Fibonacci numbers. Moreover, we prove the Hyers-Ulam stability of that equation. Cited in 28 Documents MSC: 39B82 Stability, separation, extension, and related topics for functional equations 39B52 Functional equations for functions with more general domains and/or ranges × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Ulam, S. M., A Collection of Mathematical Problems (1960), New York, NY, USA: Interscience, New York, NY, USA · Zbl 0086.24101 [2] Hyers, D. H., On the stability of the linear functional equation, Proceedings of the National Academy of Sciences of the United States of America, 27, 222-224 (1941) · Zbl 0061.26403 · doi:10.1073/pnas.27.4.222 [3] Jung, S.-M., Functional equation \(f \left(x\right) = p f \left(x - 1\right) - q f(x - 2)\) and its Hyers-Ulam stability, Journal of Inequalities and Applications, 2008 (2009) · Zbl 1187.39037 · doi:10.1155/2009/181678 [4] Jung, S.-M., Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and Its Applications, 48 (2011), New York, NY, USA: Springer, New York, NY, USA · Zbl 1221.39038 · doi:10.1007/978-1-4419-9637-4 [5] Jung, S.-M.; Popa, D.; Rassias, M. T., On the stability of the linear functional equation in a single variable on complete metric groups, Journal of Global Optimization, 59, 1, 165-171 (2014) · Zbl 1295.33004 · doi:10.1007/s10898-013-0083-9 [6] Moszner, Z., On the stability of functional equations, Aequationes Mathematicae, 77, 1-2, 33-88 (2009) · Zbl 1207.39044 · doi:10.1007/s00010-008-2945-7 [7] Brillouet-Belluot, N.; Brzdek, J.; Cieplinski, K., On some recent developments in Ulam’s type stability, Abstract and Applied Analysis, 2012 (2012) · Zbl 1259.39019 · doi:10.1155/2012/716936 [8] Jung, S.-M., Hyers-Ulam stability of Fibonacci functional equation, Bulletin of the Iranian Mathematical Society, 35, 2, 217-227 (2009) · Zbl 1197.39017 [9] Ribenboim, P., My Numbers, My Friends: Popular Lectures on Number Theory (2000), New York, NY, USA: Springer, New York, NY, USA · Zbl 0947.11001 [10] Baron, K.; Jarczyk, W., Recent results on functional equations in a single variable, perspectives and open problems, Aequationes Mathematicae, 61, 1-2, 1-48 (2001) · Zbl 0972.39011 · doi:10.1007/s000100050159 [11] Kuczma, M., Functional Equations in a Single Variable (1968), Warszawa, Poland: Polish Scientific, Warszawa, Poland · Zbl 0196.16403 [12] Kuczma, M.; Choczewski, B.; Ger, R., Iterative Functional Equations. Iterative Functional Equations, Encyclopedia of Mathematics and Its Applications, 32 (1990), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0703.39005 · doi:10.1017/CBO9781139086639 [13] Pilyugin, S. Y., Shadowing in Dynamical Systems. Shadowing in Dynamical Systems, Lecture Notes in Mathematics, 1706 (1999), Berlin, Germany: Springer, Berlin, Germany · Zbl 0954.37014 [14] Brzdek, J.; Popa, D.; Xu, B., Hyers-Ulam stability for linear equations of higher orders, Acta Mathematica Hungarica, 120, 1-2, 1-8 (2008) · Zbl 1174.39012 · doi:10.1007/s10474-007-7069-3 [15] Trif, T., Hyers-Ulam-Rassias stability of a linear functional equation with constant coefficients, Nonlinear Functional Analysis and Applications, 11, 5, 881-889 (2006) · Zbl 1115.39028 [16] Brzdek, J.; Jung, S.-M., A note on stability of a linear functional equation of second order connected with the Fibonacci numbers and Lucas sequences, Journal of Inequalities and Applications, 2010 (2010) · Zbl 1198.39036 · doi:10.1155/2010/793947 [17] Koshy, T., Fibonacci and Lucas Numbers with Applications (2001), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0984.11010 · doi:10.1002/9781118033067 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.