×

A matrix iteration for finding Drazin inverse with ninth-order convergence. (English) Zbl 1470.65041

Summary: The aim of this paper is twofold. First, a matrix iteration for finding approximate inverses of nonsingular square matrices is constructed. Second, how the new method could be applied for computing the Drazin inverse is discussed. It is theoretically proven that the contributed method possesses the convergence rate nine. Numerical studies are brought forward to support the analytical parts.

MSC:

65F05 Direct numerical methods for linear systems and matrix inversion
15A09 Theory of matrix inversion and generalized inverses
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cantó, B.; Coll, C.; Sánchez, E., Identifiability for a class of discretized linear partial differential algebraic equations, Mathematical Problems in Engineering, 2011 (2011) · Zbl 1217.65199 · doi:10.1155/2011/510519
[2] Traub, J. F., Iterative Methods for the Solution of Equations, xviii+310 (1964), Englewood Cliffs, NJ, USA: Prentice-Hall, Englewood Cliffs, NJ, USA · Zbl 0121.11204
[3] Sen, S. K.; Prabhu, S. S., Optimal iterative schemes for computing the Moore-Penrose matrix inverse, International Journal of Systems Science. Principles and Applications of Systems and Integration, 8, 748-753 (1976) · Zbl 0336.93039
[4] Soleymani, F., A rapid numerical algorithm to compute matrix inversion, International Journal of Mathematics and Mathematical Sciences, 2012 (2012) · Zbl 1253.65051 · doi:10.1155/2012/134653
[5] Soleymani, F., A new method for solving ill-conditioned linear systems, Opuscula Mathematica, 33, 2, 337-344 (2013) · Zbl 1284.65057 · doi:10.7494/OpMath.2013.33.2.337
[6] Toutounian, F.; Soleymani, F., An iterative method for computing the approximate inverse of a square matrix and the Moore-Penrose inverse of a non-square matrix, Applied Mathematics and Computation, 224, 671-680 (2013) · Zbl 1336.65048 · doi:10.1016/j.amc.2013.08.086
[7] Soleymani, F.; Stanimirović, P. S.; Ullah, M. Z., An accelerated iterative method for computing weighted Moore-Penrose inverse, Applied Mathematics and Computation, 222, 365-371 (2013) · Zbl 1329.65073 · doi:10.1016/j.amc.2013.07.039
[8] Soleymani, F.; Stanimirović, P. S., A higher order iterative method for computing the Drazin inverse, The Scientific World Journal, 2013 (2013) · doi:10.1155/2013/708647
[9] Liu, X.; Jin, H.; Yu, Y., Higher-order convergent iterative method for computing the generalized inverse and its application to Toeplitz matrices, Linear Algebra and Its Applications, 439, 6, 1635-1650 (2013) · Zbl 1283.65032 · doi:10.1016/j.laa.2013.05.005
[10] Montero, G.; González, L.; Flórez, E.; García, M. D.; Suárez, A., Approximate inverse computation using Frobenius inner product, Numerical Linear Algebra with Applications, 9, 3, 239-247 (2002) · Zbl 1071.65534 · doi:10.1002/nla.269
[11] Soleymani, F., On a fast iterative method for approximate inverse of matrices, Korean Mathematical Society. Communications, 28, 2, 407-418 (2013) · Zbl 1276.65020 · doi:10.4134/CKMS.2013.28.2.407
[12] Sheng, X., Execute elementary row and column operations on the partitioned matrix to compute M-P inverse \(A^†\), Abstract and Applied Analysis, 2014 (2014) · Zbl 1474.65095 · doi:10.1155/2014/596049
[13] Schulz, G., Iterative Berechnung der Reziproken matrix, Zeitschrift für Angewandte Mathematik und Mechanik, 13, 57-59 (1933) · JFM 59.0535.04
[14] Ben-Israel, A.; Greville, T. N. E., Generalized Inverses, xvi+420 (2003), New York, NY, USA: Springer, New York, NY, USA · Zbl 1026.15004
[15] Soleymani, F., A fast convergent iterative solver for approximate inverse of matrices, Numerical Linear Algebra with Applications (2013) · Zbl 1340.65051 · doi:10.1002/nla.1890
[16] Ostrowski, A. M., Sur quelques transformations de la serie de LiouvilleNewman, Comptes Rendus de l’Académie des Sciences, 206, 1345-1347 (1938) · JFM 64.0410.03
[17] Soleimani, F.; Soleymani, F.; Shateyi, S., Some iterative methods free from derivatives and their basins of attraction for nonlinear equations, Discrete Dynamics in Nature and Society, 2013 (2013) · Zbl 1264.65076 · doi:10.1155/2013/301718
[18] Soleymani, F.; Babajee, D. K. R., Computing multiple roots using a class of quartically convergent methods, Alexandria Engineering Journal, 52, 531-541 (2013)
[19] Soleymani, F., Efficient optimal eighth-order derivative-free methods for nonlinear equations, Japan Journal of Industrial and Applied Mathematics, 30, 2, 287-306 (2013) · Zbl 1272.65042 · doi:10.1007/s13160-013-0103-7
[20] Torregrosa, J. R.; Argyros, I. K.; Chun, C.; Cordero, A.; Soleymani, F., Iterative methods for nonlinear equations or systems and their applications [Editorial], Journal of Applied Mathematics, 2013 (2013) · doi:10.1155/2013/656953
[21] Stewart, G. W.; Sun, J. G., Matrix Perturbation Theory, xvi+365 (1990), Boston, Mass, USA: Academic Press, Boston, Mass, USA · Zbl 0706.65013
[22] Zaka Ullah, M.; Soleymani, F.; Al-Fhaid, A. S., An efficient matrix iteration for computing weighted Moore-Penrose inverse, Applied Mathematics and Computation, 226, 441-454 (2014) · Zbl 1354.65069 · doi:10.1016/j.amc.2013.10.046
[23] Drazin, M. P., Pseudo-inverses in associative rings and semigroups, The American Mathematical Monthly, 65, 506-514 (1958) · Zbl 0083.02901 · doi:10.2307/2308576
[24] Kyrchei, I., Explicit formulas for determinantal representations of the Drazin inverse solutions of some matrix and differential matrix equations, Applied Mathematics and Computation, 219, 14, 7632-7644 (2013) · Zbl 1291.15040 · doi:10.1016/j.amc.2013.01.050
[25] Campbell, S. L.; Meyer,, C. D.; Rose, N. J., Applications of the Drazin inverse to linear systems of differential equations with singular constant coefficients, SIAM Journal on Applied Mathematics, 31, 3, 411-425 (1976) · Zbl 0341.34001 · doi:10.1137/0131035
[26] Zhao, L., The expression of the Drazin inverse with rank constraints, Journal of Applied Mathematics, 2012 (2012) · Zbl 1268.15003 · doi:10.1155/2012/390592
[27] Li, X.; Wei, Y., Iterative methods for the Drazin inverse of a matrix with a complex spectrum, Applied Mathematics and Computation, 147, 3, 855-862 (2004) · Zbl 1038.65037 · doi:10.1016/S0096-3003(02)00817-2
[28] Soleymani, F.; Stanimirović, P. S., A note on the stability of a \(p\) th order iteration for finding generalized inverses, Applied Mathematics Letters, 28, 77-81 (2014) · Zbl 1311.65035 · doi:10.1016/j.aml.2013.10.004
[29] Stanimirović, P. S.; Soleymani, F., A class of numerical algorithms for computing outer inverses, Journal of Computational and Applied Mathematics, 263, 236-245 (2014) · Zbl 1301.65032 · doi:10.1016/j.cam.2013.12.033
[30] Trott, M., The Mathematica Guide-Book For Numerics (2006), New York, NY, USA: Springer, New York, NY, USA · Zbl 1101.65001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.