×

An approach to existence of fixed points of generalized contractive multivalued mappings of integral type via admissible mapping. (English) Zbl 1470.54035

Summary: We investigate the existence of a fixed point of certain contractive multivalued mappings of integral type by using the admissible mapping. Our results generalize the several results on the topic in the literature involving Branciari, and Feng and Liu. We also construct some examples to illustrate our results.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
54E40 Special maps on metric spaces

References:

[1] Samet, B.; Vetro, C.; Vetro, P., Fixed point theorems for \(α-\psi \)-contractive type mappings, Nonlinear Analysis, 75, 4, 2154-2165 (2012) · Zbl 1242.54027 · doi:10.1016/j.na.2011.10.014
[2] Ali, M. U.; Kamran, T., On \((α*, \psi )\)-contractive multi-valued mappings, Fixed Point Theory and Applications, 2013, article 137 (2013) · Zbl 1423.54065 · doi:10.1186/1687-1812-2013-137
[3] Asl, J. H.; Rezapour, S.; Shahzad, N., On fixed points of \(\alpha-\psi \)-contractive multifunctions, Fixed Point Theory and Applications, 2012 (2012) · Zbl 1293.54017 · doi:10.1186/1687-1812-2012-212
[4] Minak, G.; Altun, I., Some new generalizations of Mizoguchi-Takahashi type fixed point theorem, Journal of Inequalities and Applications, 2013, article 493 (2013) · Zbl 1293.54030 · doi:10.1186/1029-242X-2013-493
[5] Karapinar, E.; Aydi, H.; Samet, B., Fixed points for generalized \((α,ψ)\)-contractions on generalized metric spaces, Journal of Inequalities and Applications, 2014, article 229 (2014) · Zbl 1469.54057
[6] Ali, M. U.; Kamran, T.; Karapinar, E., A new approach to \(( \alpha, \psi )\)-contractive nonself multivalued mappings, Journal of Inequalities and Applications, 2014, 71 (2014) · Zbl 1338.54151 · doi:10.1186/1029-242X-2014-71
[7] Ali, M. U.; Kiran, Q.; Shahzad, N., Fixed point theorems for multi-valued mappings involving \(\alpha \)-function, Abstract and Applied Analysis, 2014 (2014) · Zbl 1469.54046 · doi:10.1155/2014/409467
[8] Ali, M. U.; Kamran, T.; Shahzad, N., Best proximity point for \(\alpha - \psi \) -proximal contractive multimaps · Zbl 1469.54045
[9] Ali, M. U.; Kamran, T.; Karapinar, E., Fixed point of \(α-ψ\)-contractive type mappings in uniform spaces · Zbl 1345.54039
[10] Karapınar, E., Discussion on \(\alpha - \psi\) contractions on generalized metric spaces, Abstract and Applied Analysis, 2014 (2014) · Zbl 1474.54177 · doi:10.1155/2014/962784
[11] Karapınar, E.; Samet, B., Generalized \(\alpha - \psi\) contractive type mappings and related fixed point theorems with applications, Abstract and Applied Analysis, 2012 (2012) · Zbl 1252.54037 · doi:10.1155/2012/793486
[12] Karapinar, E.; Shahi, P.; Tas, K., Generalized \(α- ψ\)-contractive type mappings of integral type and related fixed point theorems, J Inequal. Appl, 2014, article 160 (2014) · Zbl 1373.54055 · doi:10.1186/1029-242X-2014-160
[13] Branciari, A., A fixed point theorem for mappings satisfying a general contractive condition of integral type, International Journal of Mathematics and Mathematical Sciences, 29, 9, 531-536 (2002) · Zbl 0993.54040 · doi:10.1155/S0161171202007524
[14] Feng, Y.; Liu, S., Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, Journal of Mathematical Analysis and Applications, 317, 1, 103-112 (2006) · Zbl 1094.47049 · doi:10.1016/j.jmaa.2005.12.004
[15] Banach, S., Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fundamenta Mathematicae, 3, 133-181 (1922) · JFM 48.0201.01
[16] Popa, V., A general fixed point theorem for occasionally weakly compatible mappings and applications, Scientific Studies and Research: Series Mathematics and Informatics, 22, 1, 77-92 (2012) · Zbl 1289.54152
[17] Samet, B.; Vetro, C., An integral version of Ćirić’s fixed point theorem, Mediterranean Journal of Mathematics, 9, 1, 225-238 (2012) · Zbl 1237.54059 · doi:10.1007/s00009-011-0120-1
[18] Kamran, T., Fixed point theorems for hybrid mappings satisfying an integral type contractive condition, Georgian Mathematical Journal, 19, 1, 117-125 (2012) · Zbl 1238.54026 · doi:10.1515/gmj-2012-0005
[19] Sintunavarat, W.; Kumam, P., Gregus-type common fixed point theorems for tangential multivalued mappings of integral type in metric spaces, International Journal of Mathematics and Mathematical Sciences, 2011 (2011) · Zbl 1215.54026 · doi:10.1155/2011/923458
[20] Altun, I.; Turkoglu, D., Some fixed point theorems for weakly compatible multivalued mappings satisfying some general contractive conditions of integral type, Bulletin of the Iranian Mathematical Society, 36, 1, 55-67 (2010) · Zbl 1217.54035
[21] Pathak, H. K.; Shahzad, N., Gregus type fixed point results for tangential mappings satisfying contractive conditions of integral type, Bulletin of the Belgian Mathematical Society, 16, 2, 277-288 (2009) · Zbl 1167.54016
[22] Chauhan, S.; Shatanawi, W.; Radenovic, S.; Abu-Irwaq, I., Variants of sub-sequentially continuous mappings and integral-type fixed point results, Rendiconti del Circolo Matematico di Palermo, 63, 1, 53-72 (2014) · Zbl 1310.54042 · doi:10.1007/s12215-013-0141-7
[23] Vijayaraju, P.; Rhoades, B. E.; Mohanraj, R., A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type, International Journal of Mathematics and Mathematical Sciences, 15, 2359-2364 (2005) · Zbl 1113.54027 · doi:10.1155/IJMMS.2005.2359
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.