×

An adaptive fuzzy sliding mode control design for a class of uncertain horizontal platform systems. (English) Zbl 1406.93080

Summary: This paper presents an adaptive fuzzy sliding mode control design for a class of uncertain horizontal platform systems (HPSs). Firstly, a nonsingular terminal sliding surface is proposed for HPSs. Then, a fuzzy logic system is introduced to estimate the system uncertainties. The adaptive fuzzy sliding mode controller can guarantee the stability of the closed-loop system. The corresponding numerical simulations are demonstrated to verify the effectiveness of the proposed method.

MSC:

93B12 Variable structure systems
93C40 Adaptive control/observation systems
93C42 Fuzzy control/observation systems
93C41 Control/observation systems with incomplete information

References:

[1] Chen, Y.; Wu, X.; Liu, Z., Global chaos synchronization of electro-mechanical gyrostat systems via variable substitution control, Chaos, Solitons and Fractals, 42, 2, 1197-1205 (2009) · Zbl 1198.93009 · doi:10.1016/j.chaos.2009.03.014
[2] Ge, Z.-M.; Jhuang, W.-R., Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor, Chaos, Solitons and Fractals, 33, 1, 270-289 (2007) · Zbl 1152.34355 · doi:10.1016/j.chaos.2005.12.040
[3] Ge, Z.-M.; Yu, T.-C.; Chen, Y.-S., Chaos synchronization of a horizontal platform system, Journal of Sound and Vibration, 268, 4, 731-749 (2003) · doi:10.1016/S0022-460X(02)01607-3
[4] Shinbrot, T.; Ott, E.; Grebogi, C.; Yorke, J. A., Using chaos to direct trajectories to targets, Physical Review Letters, 65, 26, 3215-3218 (1990) · doi:10.1103/PhysRevLett.65.3215
[5] Zhang, Z.; Shen, H.; Li, J., Adaptive stabilization of uncertain unified chaotic systems with nonlinear input, Applied Mathematics and Computation, 218, 8, 4260-4267 (2011) · Zbl 1245.65076 · doi:10.1016/j.amc.2011.09.056
[6] Chen, M.; Zhou, D.; Shang, Y., A new observer-based synchronization scheme for private communication, Chaos Solitons and Fractals, 24, 4, 1025-1030 (2005) · Zbl 1069.94508 · doi:10.1016/j.chaos.2004.09.096
[7] Yu, X. H.; Kaynak, O., Sliding-mode control with soft computing: a survey, IEEE Transactions on Industrial Electronics, 56, 9, 3275-3285 (2009) · doi:10.1109/TIE.2009.2027531
[8] Xiang, W.; Huangpu, Y., Second-order terminal sliding mode controller for a class of chaotic systems with unmatched uncertainties, Communications in Nonlinear Science and Numerical Simulation, 15, 11, 3241-3247 (2010) · Zbl 1222.93045 · doi:10.1016/j.cnsns.2009.12.012
[9] Chen, C.-L.; Peng, C. C.; Yau, H.-T., High-order sliding mode controller with backstepping design for aeroelastic systems, Communications in Nonlinear Science and Numerical Simulation, 17, 4, 1813-1823 (2012) · Zbl 1242.93087 · doi:10.1016/j.cnsns.2011.09.011
[10] He, N. B.; Gao, Q.; Jiang, C. S., Robust adaptive control for a class of chaotic system using backstepping, Procedia Engineering, 15, 1229-1233 (2011) · doi:10.1016/j.proeng.2011.08.227
[11] Boulkroune, A.; Tadjine, M.; M’Saad, M.; Farza, M., Fuzzy adaptive controller for MIMO nonlinear systems with known and unknown control direction, Fuzzy Sets and Systems, 161, 6, 797-820 (2010) · Zbl 1217.93086 · doi:10.1016/j.fss.2009.04.011
[12] Wang, L. X., A Course in Fuzzy Ststems and Control (1997), Englewood Cliffs, NJ, USA: Prentice-Hill, Englewood Cliffs, NJ, USA · Zbl 0910.93002
[13] Wu, X.; Cai, J.; Wang, M., Master-slave chaos synchronization criteria for the horizontal platform systems via linear state error feedback control, Journal of Sound and Vibration, 295, 1-2, 378-387 (2006) · Zbl 1243.93095 · doi:10.1016/j.jsv.2006.01.038
[14] Wu, X.; Cai, J.; Wang, M., Robust synchronization of chaotic horizontal platform systems with phase difference, Journal of Sound and Vibration, 305, 3, 481-491 (2007) · Zbl 1242.93123 · doi:10.1016/j.jsv.2007.04.034
[15] Cai, J.; Wu, X.; Chen, S., Chaos synchronization criteria and costs of sinusoidally coupled horizontal platform systems, Mathematical Problems in Engineering, 2007 (2007) · Zbl 1152.70015 · doi:10.1155/2007/86852
[16] Pai, N.-S.; Yau, H.-T., Generalized projective synchronization for the horizontal platform systems via an integral-type sliding mode control, Journal of Vibration and Control, 17, 1, 11-17 (2011) · Zbl 1271.70073 · doi:10.1177/1077546309349853
[17] Bhat, S. P.; Bernstein, D. S., Finite-time stability of continuous autonomous systems, SIAM Journal on Control and Optimization, 38, 3, 751-766 (2000) · Zbl 0945.34039 · doi:10.1137/S0363012997321358
[18] Tong, S.; Li, H.-X., Fuzzy adaptive sliding-mode control for MIMO nonlinear systems, IEEE Transactions on Fuzzy Systems, 11, 3, 354-360 (2003) · doi:10.1109/TFUZZ.2003.812694
[19] Aghababa, M. P.; Aghababa, H. P., Finite-time stabilization of a non-autonomous chaotic rotating mechanical system, Journal of the Franklin Institute. Engineering and Applied Mathematics, 349, 9, 2875-2888 (2012) · Zbl 1264.93219 · doi:10.1016/j.jfranklin.2012.08.004
[20] Liu, L.; Han, Z.; Li, W., Global sliding mode control and application in chaotic systems, Nonlinear Dynamics, 56, 1-2, 193-198 (2009) · Zbl 1170.93320 · doi:10.1007/s11071-008-9391-x
[21] Eker, I., Sliding mode control with PID sliding surface and experimental application to an electromechanical plant, ISA Transactions, 45, 1, 109-118 (2006) · doi:10.1016/S0019-0578(07)60070-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.