Yue, Chao; Huang, Chengming Strong convergence of the split-step theta method for stochastic delay differential equations with nonglobally Lipschitz continuous coefficients. (English) Zbl 1470.65011 Abstr. Appl. Anal. 2014, Article ID 157498, 9 p. (2014). Summary: This paper is concerned with the convergence analysis of numerical methods for stochastic delay differential equations. We consider the split-step theta method for nonlinear nonautonomous equations and prove the strong convergence of the numerical solution under a local Lipschitz condition and a coupled condition on the drift and diffusion coefficients. In particular, these conditions admit that the diffusion coefficient is highly nonlinear. Furthermore, the obtained results are supported by numerical experiments. Cited in 3 Documents MSC: 65C30 Numerical solutions to stochastic differential and integral equations 65L03 Numerical methods for functional-differential equations 34K50 Stochastic functional-differential equations 60H10 Stochastic ordinary differential equations (aspects of stochastic analysis) 60H35 Computational methods for stochastic equations (aspects of stochastic analysis) × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] Lee, M.-K.; Kim, J.-H.; Kim, J., A delay financial model with stochastic volatility; Martingale method, Physica A: Statistical Mechanics and Its Applications, 390, 16, 2909-2919 (2011) · doi:10.1016/j.physa.2011.03.032 [2] Mao, X., Stochastic Differential Equations and Applications (2008), Chichester, UK: Horwood Publishing Limited,, Chichester, UK · doi:10.1533/9780857099402 [3] Tian, T.; Burrage, K.; Burrage, P. M. a., Stochastic delay differential equations for genetic regulatory networks, Journal of Computational and Applied Mathematics, 205, 2, 696-707 (2007) · Zbl 1112.92029 · doi:10.1016/j.cam.2006.02.063 [4] Carletti, M., Numerical solution of stochastic differential problems in the biosciences, Journal of Computational and Applied Mathematics, 185, 2, 422-440 (2006) · Zbl 1077.65007 · doi:10.1016/j.cam.2005.03.020 [5] Ivanov, A. F.; Swishchuk, A. V., Optimal control of stochastic differential delay equations with application in economics, International Journal of Qualitative Theory of Differential Equations and Applications, 2, 2, 201-213 (2008) · Zbl 1263.34116 [6] Küchler, U.; Platen, E., Strong discrete time approximation of stochastic differential equations with time delay, Mathematics and Computers in Simulation, 54, 1-3, 189-205 (2000) · doi:10.1016/S0378-4754(00)00224-X [7] Hu, Y.; Mohammed, S.-E. A.; Yan, F., Discrete-time approximations of stochastic delay equations: the milstein scheme, The Annals of Probability, 32, 1, 265-314 (2004) · Zbl 1062.60065 · doi:10.1214/aop/1078415836 [8] Huang, C., Mean square stability and dissipativity of two classes of theta methods for systems of stochastic delay differential equations, Journal of Computational and Applied Mathematics, 259, 77-86 (2014) · Zbl 1291.65020 · doi:10.1016/j.cam.2013.03.038 [9] Fan, Z.; Liu, M.; Cao, W., Existence and uniqueness of the solutions and convergence of semi-implicit Euler methods for stochastic pantograph equations, Journal of Mathematical Analysis and Applications, 325, 2, 1142-1159 (2007) · Zbl 1107.60030 · doi:10.1016/j.jmaa.2006.02.063 [10] Baker, C. T. H.; Buckwar, E., Numerical analysis of explicit one-step methods for stochastic delay differential equations, LMS Journal of Computation and Mathematics, 3, 315-335 (2000) · Zbl 0974.65008 · doi:10.1112/S1461157000000322 [11] Zhang, H.; Gan, S.; Hu, L., The split-step backward Euler method for linear stochastic delay differential equations, Journal of Computational and Applied Mathematics, 225, 2, 558-568 (2009) · Zbl 1183.65007 · doi:10.1016/j.cam.2008.08.032 [12] Wang, X.; Gan, S., The improved split-step backward Euler method for stochastic differential delay equations, International Journal of Computer Mathematics, 88, 11, 2359-2378 (2011) · Zbl 1235.65010 · doi:10.1080/00207160.2010.538388 [13] Liu, M.; Cao, W.; Fan, Z., Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation, Journal of Computational and Applied Mathematics, 170, 2, 255-268 (2004) · Zbl 1059.65006 · doi:10.1016/j.cam.2004.01.040 [14] Mao, X.; Sabanis, S., Numerical solutions of stochastic differential delay equations under local Lipschitz condition, Journal of Computational and Applied Mathematics, 151, 1, 215-227 (2003) · Zbl 1015.65002 · doi:10.1016/S0377-0427(02)00750-1 [15] Bao, J.; Yuan, C., Convergence rate of EM scheme for SDDEs, Proceedings of the American Mathematical Society, 141, 9, 3231-3243 (2013) · Zbl 1277.65006 · doi:10.1090/S0002-9939-2013-11886-1 [16] Wu, F.; Mao, X.; Chen, K., The Cox-Ingersoll-Ross model with delay and strong convergence of its Euler-Maruyama approximate solutions, Applied Numerical Mathematics, 59, 10, 2641-2658 (2009) · Zbl 1172.65009 · doi:10.1016/j.apnum.2009.03.004 [17] Liu, J.; Zhou, J., Convergence rate of Euler-Maruyama scheme for stochastic pantograph differential equations, Communications in Nonlinear Science and Numerical Simulation, 19, 6, 1697-1705 (2014) · Zbl 1457.65006 · doi:10.1016/j.cnsns.2013.10.015 [18] Mao, X.; Rassias, M. J., Khasminskii-type theorems for stochastic differential delay equations, Stochastic Analysis and Applications, 23, 5, 1045-1069 (2005) · Zbl 1082.60055 · doi:10.1080/07362990500118637 [19] Higham, D. J.; Mao, X.; Stuart, A. M., Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM Journal on Numerical Analysis, 40, 3, 1041-1063 (2002) · Zbl 1026.65003 · doi:10.1137/S0036142901389530 [20] Higham, D. J., An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43, 3, 525-546 (2001) · Zbl 0979.65007 · doi:10.1137/S0036144500378302 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.