×

Robust adaptive filter for small satellite attitude estimation based on magnetometer and gyro. (English) Zbl 1406.93353

Summary: Based on magnetometer and gyro measurement, a sequential scheme is proposed to determine the orbit and attitude of small satellite simultaneously. In order to reduce the impact of orbital errors on attitude estimation, a robust adaptive Kalman filter is developed. It uses a scale factor and an adaptive factor, which are constructed by Huber function and innovation sequence, respectively, to adjust the covariance matrix of system state and observational noise, change the weights of predicted and measured parameters, get suitable Kalman filter gain and approximate optimal filtering results. Numerical simulations are carried out and the proposed filter is approved to be robust for the noise disturbance and parameter uncertainty and can provide higher accuracy attitude estimation.

MSC:

93E11 Filtering in stochastic control theory
93E10 Estimation and detection in stochastic control theory
93B36 \(H^\infty\)-control
93C40 Adaptive control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Côté, J.; De Lafontaine, J., Magnetic-only orbit and attitude estimation using the Square-Root Unscented Kalman Filter: application to the PROBA-2 spacecraft, Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit
[2] Psiaki, M. L.; Huang, L.; Fox, S. M., Ground tests of magnetometer-based autonomous navigation (MAGNAV) for low-earth-orbiting spacecraft, Journal of Guidance, Control, and Dynamics, 16, 1, 206-214 (1993)
[3] Wiegand, M., Autonomous satellite navigation via Kalman filtering of magnetometer data, Acta Astronautica, 38, 4-8, 395-403 (1996)
[4] Jung, H.; Psiaki, M. L., Tests of magnetometer/sun-sensor orbit determination using flight data, Journal of Guidance, Control, and Dynamics, 25, 3, 582-590 (2002)
[5] Thienel, J. K.; Harman, R. R.; Bar-Itzhack, I. Y.; Lambertson, M., Results of the magnetometer navigation (MAGNAV) inflight experiment, Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit
[6] Tortora, P.; Oshman, Y.; Santoni, F., Spacecraft angular rate estimation from magnetometer data only using an analytic predictor, Journal of Guidance, Control, and Dynamics, 27, 3, 365-373 (2004)
[7] Ding, W.; Wang, J.; Rizos, C.; Kinlyside, D., Improving adaptive kalman estimation in GPS/INS integration, Journal of Navigation, 60, 3, 517-529 (2007) · doi:10.1017/S0373463307004316
[8] Gao, S.; Zhong, Y.; Li, W., Robust adaptive filtering method for SINS/SAR integrated navigation system, Aerospace Science and Technology, 15, 6, 425-430 (2011) · doi:10.1016/j.ast.2010.08.007
[9] Zhang, H.; Shi, Y.; Wang, J., On energy-to-peak filtering for nonuniformly sampled nonlinear systems: a Markovian jump system approach, IEEE Transactions on Fuzzy Systems, 22, 1, 212-222 (2013)
[10] Zhang, H.; Shi, Y.; Saadat Mehr, A., Robust energy-to-peak filtering for networked systems with time-varying delays and randomly missing data, IET Control Theory & Applications, 4, 12, 2921-2936 (2010) · doi:10.1049/iet-cta.2009.0243
[11] Zhang, H.; Mehr, A. S.; Shi, Y., Improved robust energy-to-peak filtering for uncertain linear systems, Signal Processing, 90, 9, 2667-2675 (2010) · Zbl 1194.94159 · doi:10.1016/j.sigpro.2010.03.011
[12] Zhang, H.; Shi, Y., Parameter-dependent \(H_\infty\) filtering for linear time-varying systems, Journal of Dynamic Systems, Measurement, and Control, 135, 2 (2013)
[13] Gao, H.; Lam, J.; Wang, C., Mixed \(H_2 / H_\infty\) filtering for continuous-time polytopic systems: a parameter-dependent approach, Circuits, Systems, and Signal Processing, 24, 6, 689-702 (2005) · Zbl 1102.94033 · doi:10.1007/s00034-005-0612-y
[14] Zhang, H.; Shi, Y.; Saadat Mehr, A., On \(H_\infty\) filtering for discrete-time takagi-sugeno fuzzy systems, IEEE Transactions on Fuzzy Systems, 20, 2, 396-401 (2012) · doi:10.1109/TFUZZ.2011.2175933
[15] Zarei, J.; Tajeddini, M. A.; Karimi, H. R., Vibration analysis for bearing fault detection and classification using an intelligent filter, Mechatronics, 24, 151-157 (2014)
[16] Wei, Y.; Qiu, J.; Reza Karimi, H., A new design of \(H_\infty\) filtering for continuous-time Markovian jump systems with time-varying delay and partially accessible mode information, Signal Processing, 93, 9, 2392-2407 (2013)
[17] Basin, M.; Maldonado, J. J.; Karimi, H. R., Mean-square filtering for polynomial system states confused with poisson noises over polynomial observations, Modeling, Identification and Control, 32, 2, 47-55 (2011) · doi:10.4173/mic.2011.2.1
[18] Karimi, H. R., Robust delay-dependent \(H_\infty\) control of uncertain time-delay systems with mixed neutral, discrete, and distributed time-delays and Markovian switching parameters, IEEE Transactions on Circuits and Systems: I: Regular Papers, 58, 8, 1910-1923 (2011) · Zbl 1468.93087 · doi:10.1109/TCSI.2011.2106090
[19] Soken, H. E.; Hajiyev, C., Pico satellite attitude estimation via Robust Unscented Kalman Filter in the presence of measurement faults, ISA Transactions, 49, 3, 249-256 (2010) · doi:10.1016/j.isatra.2010.04.001
[20] Hide, C.; Moore, T.; Smith, M., Adaptive Kalman filtering algorithms for integrating GPS and low cost INS, Proceedings of the Position Location and Navigation Symposium (PLANS ’04)
[21] Hajiyev, C., Adaptive filtration algorithm with the filter gain correction applied to integrated INS/radar altimeter, Proceedings of the Institution of Mechanical Engineers G: Journal of Aerospace Engineering, 221, 5, 847-855 (2007) · doi:10.1243/09544100JAERO173
[22] Douglas, S. C.; Madisetti, V. K., Introduction to adaptive filters, Digital Signal Processing Fundamentals, 1-18 (2010), Boca Raton, Fla, USA: Taylor & Francis, Boca Raton, Fla, USA
[23] Kim, K. H.; Lee, J. G.; Park, C. G., Adaptive two-stage Kalman filter in the presence of unknown random bias, International Journal of Adaptive Control and Signal Processing, 20, 7, 305-319 (2006) · Zbl 1130.93052 · doi:10.1002/acs.900
[24] Yang, Y.; Song, L.; Xu, T.; Carosio, A.; Kutterer, H., New robust estimator for the adjustment of correlated GPS networks, Proceedings of the 1st International Symposium on Robust Statistics and Fuzzy Techniques in Geodesy and GIS, IGP-Bericht
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.