×

Remarks on some recent fixed point results on quaternion-valued metric spaces. (English) Zbl 1469.54034

Summary: In [ibid. 2014, Article ID 258985, 9 p. (2014; Zbl 1469.54091)], A. El-Sayed Ahmed et al. introduced the notion of quaternion-valued metric as a generalization of metric and proved a common fixed point theorem in the context of quaternion-valued metric space. In this paper, we will show that the quaternion-valued metric spaces are subspaces of cone metric spaces. Consequently, the fixed point results in such spaces can be derived as a consequence of the corresponding existing fixed point result in the setting cone metric spaces.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
54E40 Special maps on metric spaces

Citations:

Zbl 1469.54091
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Azam, A.; Fisher, B.; Khan, M., Common fixed point theorems in complex valued metric spaces, Numerical Functional Analysis and Optimization, 32, 3, 243-253 (2011) · Zbl 1245.54036
[2] Ahmed, A. E.-S.; Asad, A. J.; Omran, S., Fixed point theorems in quaternion-valued metric spaces, Abstract and Applied Analysis, 2014 (2014) · Zbl 1469.54091
[3] Du, W.-S., A note on cone metric fixed point theory and its equivalence, Nonlinear Analysis: Theory, Methods & Applications, 72, 5, 2259-2261 (2010) · Zbl 1205.54040
[4] Abdeljawad, T.; Karapinar, E., A gap in the paper “a note on cone metric fixed point theory and its equivalence” [Nonlinear Anal. 72(5), (2010), 2259-2261], Gazi University Journal of Science, 24, 2, 233-234 (2011)
[5] Khamsi, M. A., Remarks on cone metric spaces and fixed point theorems of contractive mappings, Fixed Point Theory and Applications, 2010 (2010) · Zbl 1194.54065
[6] Amini-Harandi, A.; Fakhar, M., Fixed point theory in cone metric spaces obtained via the scalarization method, Computers & Mathematics with Applications, 59, 11, 3529-3534 (2010) · Zbl 1197.54055
[7] Feng, Y.; Mao, W., The equivalence of cone metric spaces and metric spaces, Fixed Point Theory, 11, 2, 259-263 (2010) · Zbl 1221.54055
[8] Janković, S.; Kadelburg, Z.; Radenović, S., On cone metric spaces: a survey, Nonlinear Analysis: Theory, Methods & Applications, 74, 7, 2591-2601 (2011) · Zbl 1221.54059
[9] Kadelburg, Z.; Radenović, S.; Rakočević, V., A note on the equivalence of some metric and cone metric fixed point results, Applied Mathematics Letters, 24, 3, 370-374 (2011) · Zbl 1213.54067
[10] Huang, L.-G.; Zhang, X., Cone metric spaces and fixed point theorems of contractive mappings, Journal of Mathematical Analysis and Applications, 332, 2, 1468-1476 (2007) · Zbl 1118.54022
[11] Rezapour, S.; Haghi, R. H., Some notes on the paper ‘cone metric spaces and fixed point theorems of contractive mappings’, Journal of Mathematical Analysis and Applications, 345, 2, 719-724 (2008) · Zbl 1145.54045
[12] Hadžić, O.; Gajić, L., Coincidence points for set-valued mappings in convex metric spaces, Univerzitet u Novom Sadu. Zbornik Radova Prirodno-Matematičkog Fakulteta, 16, 1, 13-25 (1986) · Zbl 0639.54037
[13] Karapınar, E., Couple fixed point theorems for nonlinear contractions in cone metric spaces, Computers & Mathematics with Applications, 59, 12, 3656-3668 (2010) · Zbl 1198.65097
[14] Abdeljawad, T.; Karapinar, E., Quasicone metric spaces and generalizations of Caristi Kirk’s theorem, Fixed Point Theory and Applications, 2009 (2009) · Zbl 1197.54051
[15] Karapınar, E., Some nonunique fixed point theorems of Ćirić type on cone metric spaces, Abstract and Applied Analysis, 2010 (2010) · Zbl 1194.54064
[16] Khojsteh, F.; Razani, A.; Moradi, S., A fixed point of generalized \(T_F\)-contraction mappings in cone metric spaces, Fixed Point Theory and Applications, 2011, article 14 (2011) · Zbl 1281.54029
[17] Assad, N. A.; Kirk, W. A., Fixed point theorems for set-valued mappings of contractive type, Pacific Journal of Mathematics, 43, 553-562 (1972) · Zbl 0239.54032
[18] Chen, G.-Y.; Huang, X. X.; Yang, X. Q., Vector Optimization (2005), Berlin, Germany: Springer, Berlin, Germany · Zbl 1105.90079
[19] Du, W.-S., On some nonlinear problems induced by an abstract maximal element principle, Journal of Mathematical Analysis and Applications, 347, 2, 391-399 (2008) · Zbl 1148.49013
[20] Du, W.-S., The existence of cone critical point and common fixed point with applications, Journal of Applied Mathematics, 2011 (2011) · Zbl 1304.54077
[21] Aydi, H.; Bota, M.-F.; Karapınar, E.; Mitrović, S., A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory and Applications, 2012, article 88 (2012) · Zbl 1457.54032
[22] Aydi, H.; Bota, M.-F.; Karapinar, E.; Moradi, S., A common fixed point for weak \(\varphi \)-contractions on \(b\)-metric spaces, Fixed Point Theory, 13, 2, 337-346 (2012) · Zbl 1297.54080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.