×

Some interesting bifurcations of nonlinear waves for the generalized Drinfel’d-Sokolov system. (English) Zbl 1470.35305

Summary: We study the bifurcations of nonlinear waves for the generalized Drinfel’d-Sokolov system \(u_t +(v^m)_x = 0, v_t + a(v^n)_{x x x} + b u_x v + c u v_x = 0\) called \(D(m, n)\) system. We reveal some interesting bifurcation phenomena as follows. (1) For \(D(2, 1)\) system, the fractional solitary waves can be bifurcated from the trigonometric periodic waves and the elliptic periodic waves, and the kink waves can be bifurcated from the solitary waves and the singular waves. (2) For \(D(1, 2)\) system, the compactons can be bifurcated from the solitary waves, and the peakons can be bifurcated from the solitary waves and the singular cusp waves. (3) For \(D(2, 2)\) system, the solitary waves can be bifurcated from the smooth periodic waves and the singular periodic waves.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35B32 Bifurcations in context of PDEs

References:

[1] Olver, P. J., Applications of Lie Groups to Differential Equations. Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 107 (1993), New York, NY, USA: Springer, New York, NY, USA · Zbl 0785.58003 · doi:10.1007/978-1-4612-4350-2
[2] Göktaş, Ü.; Hereman, W., Symbolic computation of conserved densities for systems of nonlinear evolution equations, Journal of Symbolic Computation, 24, 5, 591-622 (1997) · Zbl 0891.65129 · doi:10.1006/jsco.1997.0154
[3] Xie, F. D.; Yan, Z. Y., New exact solution profiles of the nonlinear dispersion Drinfel’d-Sokolov \((D(m, n))\) system, Chaos, Solitons and Fractals, 39, 2, 866-872 (2009) · Zbl 1197.35252 · doi:10.1016/j.chaos.2007.01.137
[4] Deng, X. J.; Cao, J. L.; Li, X., Travelling wave solutions for the nonlinear dispersion Drinfel’d-Sokolov \((D(m, n))\) system, Communications in Nonlinear Science and Numerical Simulation, 15, 2, 281-290 (2010) · Zbl 1221.35329 · doi:10.1016/j.cnsns.2009.03.023
[5] Zhang, K. L.; Tang, S. Q.; Wang, Z. J., Bifurcations of travelling wave solutions for the nonlinear dispersion Drinfel’d-Sokolov \((D(m, n))\) system, Applied Mathematics and Computation, 217, 4, 1620-1631 (2010) · Zbl 1203.35203 · doi:10.1016/j.amc.2009.07.047
[6] Hu, J. Y., Classification of single traveling wave solutions to the nonlinear dispersion Drinfel’d-Sokolov system, Applied Mathematics and Computation, 219, 4, 2017-2025 (2012) · Zbl 1295.35167 · doi:10.1016/j.amc.2012.08.043
[7] Wang, J. P., A list of 1 + 1 dimensional intergrable equations and their propertise, Journal of Mathematical Physics, 9, 213-233 (2002) · Zbl 1362.37137
[8] Wazwaz, A. M., Exact and explicit travelling wave solutions for the nonlinear Drinfeld-Sokolov system, Communications in Nonlinear Science and Numerical Simulation, 11, 3, 311-325 (2006) · Zbl 1078.35093 · doi:10.1016/j.cnsns.2004.10.001
[9] Biazar, J.; Ayati, Z., Exp and modified Exp function methods for nonlinear Drinfeld-Sokolov system, Journal of King Saud University—Science, 24, 4, 315-318 (2012) · doi:10.1016/j.jksus.2010.08.013
[10] Zhang, F.; Qi, J. M.; Yuan, W. J., Further results about traveling wave exact solutions of the Drinfeld-Sokolov Equations, Journal of Applied Mathematics, 2013 (2013) · Zbl 1397.35266 · doi:10.1155/2013/523732
[11] Bekir, A., New exact travelling wave solutions for regularized long-wave, phi-four and Drinfeld-Sokolov equations, International Journal of Nonlinear Science, 6, 46-52 (2008) · Zbl 1159.35407
[12] El-Wakil, S. A.; Abdou, M. A., Modified extended tanh-function method for solving nonlinear partial differential equations, Chaos, Solitons and Fractals, 31, 5, 1256-1264 (2007) · Zbl 1139.35389 · doi:10.1016/j.chaos.2005.10.072
[13] Gürses, M.; Karasu, A., Integrable KdV systems: recursion operators of degree four, Physics Letters A: General, Atomic and Solid State Physics, 251, 4, 247-249 (1999) · Zbl 0984.37081
[14] Casati, P.; Pedroni, M., Drinfeld-Sokolov reduction on a simple lie algebra from the bihamiltonian point of view, Letters in Mathematical Physics, 25, 2, 89-101 (1992) · Zbl 0767.58019 · doi:10.1007/BF00398305
[15] Delduc, F.; Fehér, L.; Gallot, L., Nonstandard Drinfeld-Sokolov reduction, Journal of Physics A: Mathematical and General, 31, 25, 5545-5563 (1998) · Zbl 0937.37043 · doi:10.1088/0305-4470/31/25/006
[16] Fehér, L.; Harnad, J.; Marshall, I., Generalized Drinfeld-Sokolov reductions and KdV type hierarchies, Communications in Mathematical Physics, 154, 1, 181-214 (1993) · Zbl 0773.35068 · doi:10.1007/BF02096838
[17] Fehér, L.; Marshall, I., Extensions of the matrix Gelfand-Dickey hierarchy from generalized Drinfeld-Sokolov reduction, Communications in Mathematical Physics, 183, 2, 423-461 (1997) · Zbl 0879.35130 · doi:10.1007/BF02506414
[18] Feigin, B., Quantization of the Drinfeld-Sokolov reduction, Physics Letters B: Nuclear, Elementary Particle and High-Energy Physics, 246, 1-2, 75-81 (1990) · Zbl 1242.17023
[19] Frenkel, E.; Kac, V.; Wakimoto, M., Characters and fusion rules for W-algebras via quantized Drinfeld-Sokolov reduction, Communications in Mathematical Physics, 147, 2, 295-328 (1992) · Zbl 0768.17008 · doi:10.1007/BF02096589
[20] Frenkel, E.; Reshetikhin, N.; Semenov-Tian-Shansky, M. A., Drinfeld-Sokolov reduction for difference operators and deformations of W-algebras I. The case of Virasoro algebra, Communications in Mathematical Physics, 192, 3, 605-629 (1998) · Zbl 0916.17020 · doi:10.1007/s002200050311
[21] Semenov-Tian-Shansky, M. A.; Sevostyanov, A. V., Drinfeld-Sokolov reduction for difference operators and deformations of W-algebras II. The general semisimple case, Communications in Mathematical Physics, 192, 3, 631-647 (1998) · Zbl 0916.17021 · doi:10.1007/s002200050312
[22] Sole, A. D.; Kac, V. G.; Valeri, D., Classical W-algebras and generalized Drinfeld-Sokolov Bi-Hamiltonian systems within the theory of poisson vertex algebras, Communications in Mathematical Physics, 323, 663-711 (2013) · Zbl 1320.37031 · doi:10.1007/s00220-013-1785-z
[23] Long, Y.; Rui, W.-G.; He, B.; Chen, C., Bifurcations of travelling wave solutions for generalized Drinfeld-Sokolov equations, Applied Mathematics and Mechanics, 27, 11, 1549-1555 (2006) · Zbl 1231.35036 · doi:10.1007/s10483-006-1113-1
[24] Ugurlu, Y.; Kaya, D., Exact and numerical solutions of generalized Drinfeld-Sokolov equations, Physics Letters A: General, Atomic and Solid State Physics, 372, 16, 2867-2873 (2008) · Zbl 1220.74027 · doi:10.1016/j.physleta.2008.01.003
[25] Wen, Z. S.; Liu, Z. R.; Song, M., New exact solutions for the classical Drinfel’d-Sokolov-Wilson equation, Applied Mathematics and Computation, 215, 6, 2349-2358 (2009) · Zbl 1181.35221 · doi:10.1016/j.amc.2009.08.025
[26] Sweet, E.; van Gorder, R. A., Analytical solutions to a generalized Drinfel’d-Sokolov equation related to DSSH and KdV6, Applied Mathematics and Computation, 216, 10, 2783-2791 (2010) · Zbl 1195.35271 · doi:10.1016/j.amc.2010.03.128
[27] Sweet, E.; van Gorder, R. A., Trigonometric and hyperbolic type solutions to a generalized Drinfel’d-Sokolov equation, Applied Mathematics and Computation, 217, 8, 4147-4166 (2010) · Zbl 1206.35223 · doi:10.1016/j.amc.2010.09.064
[28] Sweet, E.; van Gorder, R. A., Exponential-type solutions to a generalized Drinfel’d-Sokolov equation, Physica Scripta, 82, 3 (2010) · Zbl 1206.37043 · doi:10.1088/0031-8949/82/03/035006
[29] Sweet, E.; van Gorder, R. A., Traveling wave solutions \((\mu, v)\) to a generalized Drinfel’d-Sokolov system which satisfy \(u = a_1 v^m + a_0\), Applied Mathematics and Computation, 218, 19, 9911-9921 (2012) · Zbl 1252.65177 · doi:10.1016/j.amc.2012.03.078
[30] Wu, L. P.; Chen, S. F.; Pang, C. P., Traveling wave solutions for generalized Drinfeld-Sokolov equations, Applied Mathematical Modelling, 33, 11, 4126-4130 (2009) · Zbl 1205.35282 · doi:10.1016/j.apm.2009.02.013
[31] Karasu, A.; Sakovich, S. Y., Bäcklund transformation and special solutions for the Drinfeld-Sokolov-Satsuma-Hirota system of coupled equations, Journal of Physics A: Mathematical and General, 34, 36, 7355-7358 (2001) · Zbl 0983.35116 · doi:10.1088/0305-4470/34/36/315
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.