×

An adaptive nonconforming finite element algorithm for Laplace eigenvalue problem. (English) Zbl 1470.65200

Summary: We establish Crouzeix-Raviart element adaptive algorithm based on Rayleigh quotient iteration and give its a priori/a posteriori error estimates. Our algorithm is performed under the package of Chen, and satisfactory numerical results are obtained.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs

Software:

iFEM
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Dahmen, W.; Rohwedder, T.; Schneider, R.; Zeiser, A., Adaptive eigenvalue computation: complexity estimates, Numerische Mathematik, 110, 3, 277-312 (2008) · Zbl 1157.65029
[2] Dai, X.; Xu, J.; Zhou, A., Convergence and optimal complexity of adaptive finite element eigenvalue computations, Numerische Mathematik, 110, 3, 313-355 (2008) · Zbl 1159.65090
[3] Heuveline, V.; Rannacher, R., A posteriori error control for finite approximations of elliptic eigenvalue problems, Advances in Computational Mathematics, 15, 1-4, 107-138 (2001) · Zbl 0995.65111
[4] Han, J.; Yang, Y., A class of spectral element methods and its a priori/a posteriori error estimates for 2nd-order elliptic eigenvalue problems, Abstract and Applied Analysis, 2013 (2013) · Zbl 1291.65332
[5] Mao, D.; Shen, L.; Zhou, A., Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates, Advances in Computational Mathematics, 25, 1-3, 135-160 (2006) · Zbl 1103.65112
[6] Mehrmann, V.; Miedlar, A., Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations, Numerical Linear Algebra with Applications, 18, 3, 387-409 (2011) · Zbl 1249.65226
[7] Rohwedder, T.; Schneider, R.; Zeiser, A., Perturbed preconditioned inverse iteration for operator eigenvalue problems with applications to adaptive wavelet discretization, Advances in Computational Mathematics, 34, 1, 43-66 (2011) · Zbl 1208.65160
[8] Yang, Y.; Zhang, Y.; Bi, H., Multigrid discretization and iterative algorithm for mixed variational formulation of the eigenvalue problem of electric field, Abstract and Applied Analysis, 2012 (2012) · Zbl 1256.78001
[9] Bi, H.; Yang, Y.; Li, H., Local and parallel finite element discretizations for eigenvalue problems, SIAM Journal on Scientific Computing, 35, 6, 2575-2597 (2013) · Zbl 1292.65120
[10] Li, H.; Yang, Y., The adaptive finite element method based on multi-scale discretizations for eigenvalue problems, Computers & Mathematics with Applications, 65, 7, 1086-1102 (2013) · Zbl 1266.65196
[11] Yang, Y.; Bi, H., Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems, SIAM Journal on Numerical Analysis, 49, 4, 1602-1624 (2011) · Zbl 1236.65143
[12] Crouzeix, M.; Raviart, P.-A., Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, RAIRO—Analyse Numérique, 7, 3, 33-75 (1973) · Zbl 0302.65087
[13] Durán, R. G.; Gastaldi, L.; Padra, C., A posteriori error estimators for mixed approximations of eigenvalue problems, Mathematical Models & Methods in Applied Sciences, 9, 8, 1165-1178 (1999) · Zbl 1012.65112
[14] Li, Y., A posteriori error analysis of nonconforming methods for the eigenvalue problem, Journal of Systems Science & Complexity, 22, 3, 495-502 (2009) · Zbl 1188.65150
[15] Lovadina, C.; Lyly, M.; Stenberg, R., A posteriori estimates for the Stokes eigenvalue problem, Numerical Methods for Partial Differential Equations, 25, 1, 244-257 (2009) · Zbl 1169.65109
[16] Russo, A. D.; Alonso, A. E., A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems, Computers & Mathematics with Applications, 62, 11, 4100-4117 (2011) · Zbl 1236.65142
[17] Armentano, M. G.; Durán, R. G., Asymptotic lower bounds for eigenvalues by nonconforming finite element methods, Electronic Transactions on Numerical Analysis, 17, 93-101 (2004) · Zbl 1065.65127
[18] Chen, L., iFEM: An Innovation Finite Element Methods Package in MATLAB (2008)
[19] Babuška, I.; Osborn, J.; Ciarlet, P. G.; Lions, J. L., Eigenvalue problems, Handbook of Numerical Analysis: Finite Element Methods (Part 1), 2, 641-787 (1991), Amsterdam, The Netherlands: North-Holland, Amsterdam, The Netherlands · Zbl 0875.65087
[20] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods. The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 15, xvi+361 (2002), New York, NY, USA: Springer, New York, NY, USA · Zbl 1012.65115
[21] Chatelin, F., Spectral Approximation of Linear Operators. Spectral Approximation of Linear Operators, Computer Science and Applied Mathematics, xix+458 (1983), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 1214.01004
[22] Ciarlet, P. G.; Ciarlet, P. G.; Lions, J. L., Basic error estimates for elliptic problems, Handbook of Numerical Analysis: Finite Element Methods (Part 1), 2, 17-351 (1991), Amsterdam, The Netherlands: North-Holland, Amsterdam, The Netherlands · Zbl 0875.65086
[23] Yang, Y.; Zhang, Z.; Lin, F., Eigenvalue approximation from below using non-conforming finite elements, Science China. Mathematics, 53, 1, 137-150 (2010) · Zbl 1187.65125
[24] Yang, Y.; Bi, H.; Yu, Y., The convergence and error estimates of the shifted inverse iteration based on multigrid discretizations for eigenvalue problems
[25] Agouzal, A., A posteriori error estimator for finite element discretizations of quasi-Newtonian Stokes flows, International Journal of Numerical Analysis and Modeling, 2, 2, 221-239 (2005) · Zbl 1083.76042
[26] Carstensen, C.; Hu, J.; Orlando, A., Framework for the a posteriori error analysis of nonconforming finite elements, SIAM Journal on Numerical Analysis, 45, 1, 68-82 (2007) · Zbl 1165.65072
[27] Carstensen, C.; Hu, J., A unifying theory of a posteriori error control for nonconforming finite element methods, Numerische Mathematik, 107, 3, 473-502 (2007) · Zbl 1127.65083
[28] Wang, L.; Xu, X., Foundation of Mathematics in Finite Element Methods, Beijing, China: Science Press, Beijing, China
[29] Trefethen, L. N.; Bau, D., Numerical Linear Algebra, xii+361 (1997), Philadelphia, Pa, USA: Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA · Zbl 0874.65013
[30] Yang, Y.; Han, J.; Bi, H.; Yu, Y., The lower/upper bound property of the nonoconforming Crouzeix-Raviart element eigenvalues on adaptive meshes, Journal of Scientific Computing (2014) · Zbl 1320.65163
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.