Effect of the velocity second slip boundary condition on the peristaltic flow of nanofluids in an asymmetric channel: exact solution. (English) Zbl 1470.76121

Summary: The problem of peristaltic nanofluid flow in an asymmetric channel in the presence of the second-order slip boundary condition was investigated in this paper. To the best of the authors’ knowledge, this parameter was here incorporated for the first time in such field of a peristaltic flow. The system governing the current flow was found as a set of nonlinear partial differential equations in the stream function, pressure gradient, nanoparticle concentration, and temperature distribution. Therefore, this system has been successfully solved exactly via a very effective procedure. These exact solutions were then proved to reduce to well-known results in the absence of second slip which were published very recently in the literature. Effect of the second slip parameter on the present physical parameters was discussed through graphs and it was found that this type of slip is a very important one to predict the investigated physical model. Moreover, the variation of many physical parameters such as amplitudes of the lower and upper waves, phase difference on the temperature distribution, nanoparticle concentration, pressure rise, velocity, and pressure gradient were also discussed. Finally, the present results may be viewed as an optimal choice for their dependence on the exact solutions which are obtained due to the highly complex nonlinear system.


76Z05 Physiological flows
92C35 Physiological flow
Full Text: DOI


[1] Latham, T. W., Fluid motion in a peristaltic pump, [M.Sc. thesis] (1966), Cambridge, Mass, USA: MIT, Cambridge, Mass, USA
[2] Ramachandra Rao, A.; Usha, S., Peristaltic transport of two immiscible viscous fluids in a circular tube, Journal of Fluid Mechanics, 298, 271-285 (1995) · Zbl 0848.76100 · doi:10.1017/S0022112095003302
[3] Misra, J. C.; Pandey, S. K., Peristaltic transport in a tapered tube, Mathematical and Computer Modelling, 22, 8, 137-151 (1995) · Zbl 0840.76099 · doi:10.1016/0895-7177(95)00162-U
[4] Mekheimer, K. S., Peristaltic transport of a couple stress fluid in a uniform and non-uniform channels, Biorheology, 39, 6, 755-765 (2002)
[5] Vajravelu, K.; Sreenadh, S.; Babu, V. R., Peristaltic transport of a Herschel-Bulkley fluid in an inclined tube, International Journal of Non-Linear Mechanics, 40, 1, 83-90 (2005) · Zbl 1295.76039 · doi:10.1016/j.ijnonlinmec.2004.07.001
[6] Mekheimer, K. S.; Abd elmaboud, Y., The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: application of an endoscope, Physics Letters A, 372, 10, 1657-1665 (2008) · Zbl 1217.76106 · doi:10.1016/j.physleta.2007.10.028
[7] Mekheimer, K. S.; Abd elmaboud, Y., Peristaltic flow of a couple stress fluid in an annulus: application of an endoscope, Physica A, 387, 11, 2403-2415 (2008) · doi:10.1016/j.physa.2007.12.017
[8] De Vries, K.; Lyons, E. A.; Ballard, G.; Levi, C. S.; Lindsay, D. J., Contractions of the inner third of the myometrium, American Journal of Obstetrics and Gynecology, 162, 3, 679-682 (1990) · doi:10.1016/0002-9378(90)90983-E
[9] Shit, G. C.; Roy, M.; Ng, E. Y. K., Effect of induced magnetic field on peristaltic flow of a micropolar fluid in an asymmetric channel, International Journal for Numerical Methods in Biomedical Engineering, 26, 11, 1380-1403 (2010) · Zbl 1397.92147 · doi:10.1002/cnm.1397
[10] Yildirim, A.; Sezer, S. A., Effects of partial slip on the peristaltic flow of a MHD Newtonian fluid in an asymmetric channel, Mathematical and Computer Modelling, 52, 3-4, 618-625 (2010) · Zbl 1201.76318 · doi:10.1016/j.mcm.2010.04.007
[11] Mekheimer, K. S.; Husseny, S. Z. A.; Abd Elmaboud, Y., Effects of heat transfer and space porosity on peristaltic flow in a vertical asymmetric channel, Numerical Methods for Partial Differential Equations, 26, 4, 747-770 (2010) · Zbl 1267.76108 · doi:10.1002/num.20451
[12] Mekheimer, K. S.; Husseny, S. Z.-A.; Abd El Lateef, A. I., Effect of lateral walls on peristaltic flow through an asymmetric rectangular duct, Applied Bionics and Biomechanics, 8, 3-4, 295-308 (2011) · doi:10.3233/ABB-2010-0011
[13] Srinivas, S.; Muthuraj, R., Effects of chemical reaction and space porosity on MHD mixed convective flow in a vertical asymmetric channel with peristalsis, Mathematical and Computer Modelling, 54, 5-6, 1213-1227 (2011) · Zbl 1228.76186 · doi:10.1016/j.mcm.2011.03.032
[14] Pandey, S. K.; Chaube, M. K., Peristaltic transport of a maxwell fluid in a channel of varying cross section induced by asymmetric waves: application to embryo transport within uterine cavity, Journal of Mechanics in Medicine and Biology, 11, 3, 675-690 (2011) · doi:10.1142/S0219519411003995
[15] Srinivas, S.; Gayathri, R.; Kothandapani, M., Mixed convective heat and mass transfer in an asymmetric channel with peristalsis, Communications in Nonlinear Science and Numerical Simulation, 16, 4, 1845-1862 (2011) · Zbl 1221.76080 · doi:10.1016/j.cnsns.2010.08.004
[16] Das, K., Influence of slip and heat transfer on mhd peristaltic flow of a Jeffrey fluid in an inclined asymmetric porous channel, Indian Journal of Mathematics, 54, 19-45 (2012) · Zbl 1253.76138
[17] Abd Elmaboud, Y.; Mekheimer, S. Kh.; Abdellateef, A. I., Thermal properties of couple-stress fluid flow in an asymmetric channel with peristalsis, Journal of Heat Transfer, 135 (2013) · Zbl 1280.76062
[18] Akbar, N. S.; Nadeem, S., Endoscopic effects on peristaltic flow of a nanofluid, Communications in Theoretical Physics, 56, 4, 761-768 (2011) · Zbl 1247.76097 · doi:10.1088/0253-6102/56/4/28
[19] Akbar, N. S.; Nadeem, S.; Hayat, T.; Hendi, A. A., Peristaltic flow of a nanofluid in a non-uniform tube, Heat and Mass Transfer, 48, 3, 451-459 (2012) · doi:10.1007/s00231-011-0892-7
[20] Akbar, N. S.; Nadeem, S., Peristaltic flow of a Phan-Thien-Tanner nanofluid in a diverging tube, Heat Transfer, 41, 1, 10-22 (2012) · doi:10.1002/htj.20386
[21] Mustafa, M.; Hina, S.; Hayat, T.; Alsaedi, A., Influence of wall properties on the peristaltic flow of a nanofluid: analytic and numerical solutions, International Journal of Heat and Mass Transfer, 55, 17-18, 4871-4877 (2012) · doi:10.1016/j.ijheatmasstransfer.2012.04.060
[22] Akbar, N. S.; Nadeem, S.; Hayat, T.; Hendi, A. A., Peristaltic flow of a nanofluid with slip effects, Meccanica, 47, 5, 1283-1294 (2012) · Zbl 1293.76007 · doi:10.1007/s11012-011-9512-3
[23] Bég, O. A.; Tripathi, D., Mathematica simulation of peristaltic pumping with double-diffusive convection in nanofluids: a bio-nano-engineering model, Journal of Nanoengineering and Nanosystems, 225, 3, 99-114 (2012) · doi:10.1177/1740349912437087
[24] Choi, S. U. S., Enhancing thermal conductivity of fluids with nanoparticles, Proceedings of the ASME International Mechanical Engineering Congress and Exposition, ASME
[25] Choi, S. U. S.; Zhang, Z. G.; Yu, W.; Lockwood, F. E.; Grulke, E. A., Anomalous thermal conductivity enhancement in nanotube suspensions, Applied Physics Letters, 79, 14, 2252-2254 (2001) · doi:10.1063/1.1408272
[26] Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J., Applications of magnetic nanoparticles in biomedicine, Journal of Physics D, 36, 13, R167-R181 (2003) · doi:10.1088/0022-3727/36/13/201
[27] Habibi, M. R.; Ghassemi, M.; Hamedi, M. H., Analysis of high gradient magnetic field effects on distribution of nanoparticles injected into pulsatile blood stream, Journal of Magnetism and Magnetic Materials, 324, 8, 1473-1482 (2012) · doi:10.1016/j.jmmm.2011.11.022
[28] Ebaid, A.; Aly, E. H., Exact analytical solution of the peristaltic nanofluids flow in an asymmetric channel with flexible walls and slip condition: application to the cancer treatment, Computational and Mathematical Methods in Medicine, 2013 (2013) · Zbl 1307.92057 · doi:10.1155/2013/825376
[29] Fang, T.; Yao, S.; Zhang, J.; Aziz, A., Viscous flow over a shrinking sheet with a second order slip flow model, Communications in Nonlinear Science and Numerical Simulation, 15, 7, 1831-1842 (2010) · Zbl 1222.76028 · doi:10.1016/j.cnsns.2009.07.017
[30] Nandeppanavar, M. M.; Vajravelu, K.; Abel, M. S.; Siddalingappa, M. N., Second order slip flow and heat transfer over a stretching sheet with non-linear Navier boundary condition, International Journal of Thermal Sciences, 58, 143-150 (2012) · doi:10.1016/j.ijthermalsci.2012.02.019
[31] Turkyilmazoglu, M., Heat and mass transfer of MHD second order slip flow, Computers & Fluids, 71, 426-434 (2013) · Zbl 1365.76349 · doi:10.1016/j.compfluid.2012.11.011
[32] Rosca, A. V.; Pop, I., Flow and heat transfer over a vertical permeable stretching/shrinking sheet with a second order slip, International Journal of Heat and Mass Transfer, 60, 355-364 (2013) · doi:10.1016/j.ijheatmasstransfer.2012.12.028
[33] Aly, E. H.; Ebaid, A., Exact analytical solution for suction and injection flow with thermal enhancement of five nanofluids over an isothermal stretching sheet with effect of the slip model: a comparative study, Abstract and Applied Analysis, 2013 (2013) · Zbl 1470.76031 · doi:10.1155/2013/721578
[34] Mishra, M.; Ramachandra Rao, A., Peristaltic transport of a Newtonian fluid in an asymmetric channel, Zeitschrift fur Angewandte Mathematik und Physik, 54, 3, 532-550 (2003) · Zbl 1099.76545 · doi:10.1007/s00033-003-1070-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.