×

Assessment of an average controller for a DC/DC converter via either a PWM or a sigma-delta-modulator. (English) Zbl 1406.93078

Summary: Sliding mode control is a discontinuous control technique that is, by its nature, appropriate for controlling variable structure systems, such as the switch regulated systems employed in power electronics. However, when designing control laws based on the average models of these systems a modulator is necessary for their experimental implementation. Among the most widely used modulators in power electronics are the pulse width modulation (PWM) and, more recently, the sigma-delta-modulator (\(\Sigma\)-\(\Delta\)-modulator). Based on the importance of achieving an appropriate implementation of average control laws and the relevance of the trajectory tracking task in DC/DC power converters, for the first time, this research presents the assessment of the experimental results obtained when one of these controllers is implemented through either a PWM or a \(\Sigma\)-\(\Delta\)-modulator to perform such a task. A comparative assessment based on the integral square error (ISE) index shows that, at frequencies with similar efficiency, the \(\Sigma\)-\(\Delta\)-modulator provides a better tracking performance for the DC/DC Buck converter. In this paper, an average control based on differential flatness was used to perform the experiments. It is worth mentioning that a different trajectory tracking controller could have been selected for this research.

MSC:

93B12 Variable structure systems
93C62 Digital control/observation systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Emelyanov, S. V., Variable Structure Control Systems (1967), Moscow, Russia: Nauka, Moscow, Russia · Zbl 0217.58102
[2] Utkin, V. I., Sliding Modes and their Applications in Variable Structure Systems (1978), Moscow, Russia: Mir Publishers, Moscow, Russia · Zbl 0398.93003
[3] Utkin, V. I., Sliding Modes in Control and Optimization. Sliding Modes in Control and Optimization, Communications and Control Engineering Series (1992), Berlin, Germany: Springer, Berlin, Germany · Zbl 0748.93044
[4] Utkin, V. I.; Guldner, J.; Shi, J., Sliding Mode Control in Electromechanical Systems (1999), London, UK: Taylor & Francis, London, UK
[5] Edwards, C.; Spurgeon, S. K., Sliding Mode Control: Theory and Applications (1998), London, UK: Taylor & Francis, London, UK
[6] Slotine, J.; Li, W., Applied Nonlinear Control (1991), Englewood Cliffs, NJ, USA: Prentice-Hall, Englewood Cliffs, NJ, USA
[7] Sastry, S., Nonlinear Systems: Analysis, Stability, and Control (1999), New York, NY, USA: Springer, New York, NY, USA
[8] Kwatny, H. G.; Blankenship, G. L., Nonlinear Control and Analytical Mechanics: A Computational Approach (2000), Boston, Mass, USA: Birkhäuser, Boston, Mass, USA · Zbl 0963.93007
[9] Żak, S. H., Systems and Control (2003), New York, NY, USA: Oxford University Press, New York, NY, USA
[10] Young, K. D.; Özgüner, Ü., Variable Structure Systems, Sliding Mode and Nonlinear Control. Variable Structure Systems, Sliding Mode and Nonlinear Control, Lecture Notes in Control and Information Sciences, 247 (1999), London, UK: Springer, London, UK
[11] Perruquetti, W.; Barbot, J. P., Sliding Mode Control in Engineering (2002), New York, NY, USA: Marcel Dekker, New York, NY, USA
[12] Sabanovic, A.; Fridman, L. M.; Spurgeon, S., Variable Structure Systems: From Principles to Implementation (2004), London, UK: IET Press, London, UK · Zbl 1142.93005
[13] Fridman, L.; Moreno, J.; Iriarte, R., Sliding Modes after the First Decade of the 21st Century: State of the Art. Sliding Modes after the First Decade of the 21st Century: State of the Art, Lecture Notes in Control and Information Sciences, 412 (2011), Heidelberg, Germany: Springer, Heidelberg, Germany
[14] Karimi, H. R., A sliding mode approach to \(H_\infty\) synchronization of master-slave time-delays systems with Markovian jumping parameters and nonlinear uncertainties, Journal of the Franklin Institute, 349, 4, 1480-1496 (2012) · Zbl 1254.93046
[15] Yu, J.; Sun, G.; Karimi, H. R., Fault-reconstruction-based cascaded sliding mode observers for descriptor linear systems, Mathematical Problems in Engineering, 2012 (2012) · Zbl 1264.93041
[16] Wang, B.; Shi, P.; Karimi, H. R., Fuzzy sliding mode control design for a class of disturbed systems, Journal of the Franklin Institute, 351, 7, 3593-3609 (2014) · Zbl 1290.93041
[17] Li, H.; Yu, J.; Hilton, C.; Liu, H., Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach, IEEE Transactions on Industrial Electronics, 60, 8, 3328-3338 (2013)
[18] Li, H.; Jing, X.; Karimi, H. R., Output-feedback-based \(H_\infty\) control for vehicle suspension systems with control delay, IEEE Transactions on Industrial Electronics, 61, 1, 436-446 (2014)
[19] Li, H.; Jing, X.; Lam, H.-K.; Shi, P., Fuzzy sampled-data control for uncertain vehicle suspension systems, IEEE Transactions on Cybernetics, 44, 7, 1111-1126 (2014)
[20] Silva-Ortigoza, R.; Hernández-Guzmán, V.; Antonio-Cruz, M.; Muñoz-Carrillo, D., DC/DC Buck power converter as a smooth starter for a DC motor based on a hierarchical control, IEEE Transactions on Power Electronics, 30, 2, 1076-1084 (2015)
[21] Hernández-Guzmán, V. M.; Silva-Ortigoza, R.; Muñoz-Carrillo, D., Velocity control of a brushed DC-motor driven by a DC to DC Buck power converter, International Journal of Innovative Computing, Information and Control, 11, 2 (2015)
[22] Sira-Ramírez, H.; Silva-Ortigoza, R., Sliding mode \(\Sigma - \Delta\) modulation control of the Boost converter, Asian Journal of Control, 7, 4, 349-355 (2005)
[23] Sira-Ramírez, H.; Silva-Ortigoza, R., Control Design Techniques in Power Electronics Devices (2006), London, UK: Springer, London, UK
[24] Krein, P. T.; Bentsman, J.; Bass, R. M.; Lesieutre, B. C., On the use of averaging for the analysis of power electronic systems, IEEE Transactions on Power Electronics, 5, 2, 182-190 (1990)
[25] Steele, R., Delta Modulation Systems (1975), London, UK: Pentech Press, London, UK
[26] Norsworthy, S. R.; Schreier, R.; Temes, G. C., Delta-Sigma Data Converters: Theory, Design, and Simulation (1997), Piscataway, NJ, USA: IEEE Press-Wiley, Piscataway, NJ, USA
[27] He, M.; Xu, J., Nonlinear PID in digital controlled buck converters, Proceedings of the 22nd Annual IEEE Applied Power Electronics Conference and Exposition (APEC ’07)
[28] Zurita-Bustamante, E. W.; Linares-Flores, J.; Guzmán-Ramírez, E.; Sira-Ramírez, H., A comparison between the GPI and PID controllers for the stabilization of a dc-dc “buck” converter: a field programmable gate array implementation, IEEE Transactions on Industrial Electronics, 58, 11, 5251-5262 (2011)
[29] Linares-Flores, J., Control suave de velocidad de motores de CD mediante convertidores de potencia CD/CD [Ph.D. thesis] (2006), Mexico City, Mexico: Sección de Mecatrónica del Departamento de Ingeniería Eléctrica del CINVESTAV-IPN, Mexico City, Mexico
[30] Antritter, F.; Maurer, P.; Reger, J., Flatness based control of a buck-converter driven DC motor, Proceedings of the 4th IFAC Symposium on Mechatronic Systems (MX ’06), Ruprecht-Karls-University
[31] El Fadil, H.; Giri, F., Accounting of Dc-Dc power converter dynamics in DC motor velocity adaptive control, Proceedings of the IEEE International Conference on Control Applications (CCA ’06)
[32] Linares-Flores, J.; Sira-Ramírez, H.; Reger, J.; Silva-Ortigoza, R., An exact tracking error dynamics passive output feedback controller for a Buck-Boost-converter driven DC motor, Proceedings of the 10th IEEE International Power Electronics Congress (CIEP ’06)
[33] Linares-Flores, J.; Reger, J.; Sira-Ramirez, H., Load torque estimation and passivity-based control of a boost-converter/DC-motor combination, IEEE Transactions on Control Systems Technology, 18, 6, 1398-1405 (2010)
[34] Silva-Ortigoza, R.; Márquez-Sánchez, C.; Carrizosa-Corral, F.; Antonio-Cruz, M.; Alba-Martínez, J. M.; Saldaña-González, G., Hierarchical velocity control based on differential flatness for a DC/DC Buck converter-DC motor system, Mathematical Problems in Engineering, 2014 (2014)
[35] El Fadil, H.; Giri, F.; Chaoui, F.-Z.; El Magueri, O., Accounting for input limitation in the control of Buck power converters, IEEE Transactions on Circuits and Systems I: Regular Papers, 56, 6, 1260-1271 (2009)
[36] Linares-Flores, J.; Sira-Ramírez, H.; Cuevas-López, E. F.; Contreras-Ordaz, M. A., Sensorless passivity based control of a DC motor via a solar powered sepic converter-full bridge combination, Journal of Power Electronics, 11, 5, 743-750 (2011)
[37] Lira, J.; Visairo, N.; Nunez, C.; Ramirez, A.; Sira-Ramrez, H., A robust nonlinear control scheme for a sag compensator active multilevel rectifier without sag detection algorithm, IEEE Transactions on Power Electronics, 27, 8, 3576-3583 (2012)
[38] Hernández-Guzmán, V. M.; Silva-Ortigoza, R.; Carrillo-Serrano, R. V., Control Automático: Teoría de Diseño, Construcción de Prototipos, Modelado, Identificación y Pruebas Experimentales (2013), Mexico City, Mexico: Colección CIDETEC—IPN, Mexico City, Mexico
[39] Silva-Ortigoza, R.; Márquez-Sánchez, C.; Carrizosa-Corral, F.; Bennett, K., Obstacle avoidance task for a wheeled mobile robot—a Matlab-Simulink-based didactic application, MATLAB: Applications for the Practical Engineer, 79-102 (2014), Rijeka, Croatia: InTech Europe, Rijeka, Croatia
[40] Capponi, G.; Livreri, P.; di Blasi, G.; Marino, F., Digital power conversion system based on a sigma-delta modulator linear model, Proceedings of the IEEE PES Power Systems Conference and Exposition
[41] Oliver-Salazar, M.; Sira-Ramírez, H., Semi-global stabilization for the Buck-Buck converter via exact tracking error dynamics passive output feedback, Proceedings of the 8th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE ’11)
[42] Sira-Ramírez, H.; Luviano-Juárez, A.; Cortés-Romero, J., Robust input-output sliding mode control of the buck converter, Control Engineering Practice, 21, 5, 671-678 (2013)
[43] Linares-Flores, J.; Sira-Ramírez, H., A smooth starter for a DC machine: a flatness based approach, Proceedings of the 1st International Conference on Electrical and Electronics Engineering (ICEEE ’04)
[44] Linares-Flores, J.; Sira-Ramírez, H., Sliding Mode-Delta modulation GPI control of a DC motor through a Buck converter, Proceedings of the 2nd IFAC Symposium on System, Structure and Control
[45] Linares-Flores, J.; Sira-Ramírez, H., DC motor velocity control through a DC-to-DC power converter, Proceedings of the 43rd IEEE Conference on Decision and Control (CDC ’04)
[46] Silva-Ortigoza, R.; García-Sánchez, J. R.; Alba-Martínez, J. M.; Hernández-Guzmán, V.; Marcelino-Aranda, M.; Taud, H.; Bautista-Quintero, R., Two-Stage control design of a Buck converter/DC motor system without velocity measurements via a \(\Sigma \)−\( \Delta \)-modulator, Mathematical Problems in Engineering, 2013 (2013) · Zbl 1299.93201
[47] Silva-Ortigoza, R.; Sira-Ramírez, H., Control of a parallel resonant inverter, Proceedings of the 43rd IEEE Conference on Decision and Control (CDC ’04)
[48] García-Rodríguez, C.; Cortés-Romero, J. A.; Sira-Ramírez, H., Algebraic identification and discontinuous control for trajectory tracking in a perturbed 1-DOF suspension system, IEEE Transactions on Industrial Electronics, 56, 9, 3665-3674 (2009)
[49] Dallago, E.; Danioni, A.; Passoni, M.; Venchi, G., Comparison between PWM and sigma-delta modulation in a power factor correction system, Proceedings of the IEEE 33rd Annual Power Electronics Specialists Conference (PESC ’02)
[50] Dunlap, S. K.; Fiez, T. S., A noise-shaped switching power supply using a delta-sigma modulator, IEEE Transactions on Circuits and Systems I: Regular Papers, 51, 6, 1051-1061 (2004)
[51] Hirota, A.; Nagai, S.; Saha, B.; Nakaoka, M., Fundamental study of a simple control ac-ac converter introducing delta-sigma modulation approach, Proceedings of the IEEE International Conference on Industrial Technology (ICIT ’08)
[52] Orcioni, S.; D’Aparo, R. D.; Crostella, G.; Nicoletti, D.; Conti, M., Dynamic oversampling ratio sigma-delta modulation for the control of switching power converter, Proceedings of the IEEE International Symposium of Circuits and Systems (ISCAS ’11)
[53] Fliess, M.; Lévine, J.; Martin, P.; Rouchon, P., Flatness and defect of non-linear systems: introductory theory and examples, International Journal of Control, 61, 6, 1327-1361 (1995) · Zbl 0838.93022
[54] Rashid, M. H., Power Electronics: Circuits, Devices and Applications (2003), Prentice-Hall
[55] Shockley, W., The theory of p-n junctions in semiconductors and p-n junction Transistors, Bell System Technical Journal, 28, 3, 435-489 (1949)
[56] Ebers, J. J.; Moll, J. L., Large-signal behavior of junction transistors, Proceedings of the IRE, 42, 12, 1761-1772 (1954)
[57] Sira-Ramírez, H.; Agrawal, S. K., Differentially Flat Systems (2004), New York, NY, USA: Marcel Dekker, New York, NY, USA · Zbl 1126.93003
[58] Holmes, D. G.; Lipo, T. A., Pulse Width Modulation for Power Converters: Principles and Practice (2003), Piscataway, NJ, USA: IEEE Press-Willey, Piscataway, NJ, USA
[59] Vilain, J.-P.; Lesbroussart, C.; Monmasson, E., Delta-sigma modulation, Power Electronic Converters: PWM Strategies and Current Control Techniques, 119-140 (2011), New York, NY, USA: Wiley-ISTE, New York, NY, USA
[60] Dorf, R. C.; Bishop, R. H., Modern Control Systems (2011), Prentice-Hall
[61] Sira-Ramirez, H., Differential geometric methods in variable-structure control, International Journal of Control, 48, 4, 1359-1390 (1988) · Zbl 0658.93022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.