×

Complete self-shrinking solutions for Lagrangian mean curvature flow in pseudo-Euclidean space. (English) Zbl 1476.53114

Summary: Let \(f(x)\) be a smooth strictly convex solution of \(\text{det}(\partial^2 f / \partial x_i \partial x_j) = \text{exp} \left\{(1 / 2) \sum_{i = 1}^n x_i(\partial f / \partial x_i) - f\right\}\) defined on a domain \(\Omega \subset \mathbb{R}^n\); then the graph \(M_{\nabla f}\) of \(\nabla f\) is a space-like self-shrinker of mean curvature flow in Pseudo-Euclidean space \(\mathbb{R}_n^{2 n}\) with the indefinite metric \(\sum d x_i d y_i\). In this paper, we prove a Bernstein theorem for complete self-shrinkers. As a corollary, we obtain if the Lagrangian graph \(M_{\nabla f}\) is complete in \(R_n^{2 n}\) and passes through the origin then it is flat.

MSC:

53E10 Flows related to mean curvature
53A35 Non-Euclidean differential geometry
35K55 Nonlinear parabolic equations
53E50 Flows related to symplectic and contact structures
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Colding, T. H.; Minicozzi, I., Generic mean curvature flow I: generic singularities, Annals of Mathematics, 175, 2, 755-833 (2012) · Zbl 1239.53084 · doi:10.4007/annals.2012.175.2.7
[2] Ecker, K.; Huisken, G., Mean curvature evolution of entire graphs, Annals of Mathematics, 130, 3, 453-471 (1989) · Zbl 0696.53036 · doi:10.2307/1971452
[3] Huisken, G., Asymptotic behavior for singularities of the mean curvature flow, Journal of Differential Geometry, 31, 1, 285-299 (1990) · Zbl 0694.53005
[4] Huisken, G., Local and global behaviour of hypersurfaces moving by mean curvature, Differential Geometry: Partial Differential Equations on Manifolds. Differential Geometry: Partial Differential Equations on Manifolds, Proceedings of Symposia in Pure Mathematics, 54 (1993), American Mathematical Society · Zbl 0791.58090
[5] Smoczyk, K., Self-shrinkers of the mean curvature flow in arbitrary codimension, International Mathematics Research Notices, 48, 2983-3004 (2005) · Zbl 1085.53059 · doi:10.1155/IMRN.2005.2983
[6] Wang, L., A Bernstein type theorem for self-similar shrinkers, Geometriae Dedicata, 151, 297-303 (2011) · Zbl 1211.53082 · doi:10.1007/s10711-010-9535-2
[7] Cao, H. D.; Li, H., A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension, Calculus of Variations and Partial Differential Equations, 46, 3-4, 879-889 (2013) · Zbl 1271.53064 · doi:10.1007/s00526-012-0508-1
[8] Chau, A.; Chen, J.; Yuan, Y., Rigidity of entire self-shrinking solutions to curvature flows, Journal für die Reine und Angewandte Mathematik, 664, 229-239 (2012) · Zbl 1250.53064 · doi:10.1515/CRELLE.2011.102
[9] Ding, Q.; Wang, Z. Z., On the self-shrinking systems in arbitrary codimension spaces
[10] Ding, Q.; Xin, Y. L., The Rigidity theorems for Lagrangian self-shrinkers, Journal für die Reine und Angewandte Mathematik (2012) · Zbl 1294.53059 · doi:10.1515/crelle-2012-0081
[11] Ecker, K., Interior estimates and longtime solutions for mean curvature flow of noncompact spacelike hypersurfaces in Minkowski space, Journal of Differential Geometry, 46, 3, 481-498 (1997) · Zbl 0909.53045
[12] Huang, R.; Wang, Z., On the entire self-shrinking solutions to Lagrangian mean curvature flow, Calculus of Variations and Partial Differential Equations, 41, 3-4, 321-339 (2011) · Zbl 1217.53069 · doi:10.1007/s00526-010-0364-9
[13] Xin, Y. L., Mean curvature flow with bounded Gauss image, Results in Mathematics, 59, 3-4, 415-436 (2011) · Zbl 1239.53087 · doi:10.1007/s00025-011-0112-2
[14] Xin, Y. L., Minimal Submanifolds and Related Topics (2003), World Scientific Publishing · Zbl 1055.53047
[15] Li, A.-M.; Xu, R.; Simon, U.; Jia, F., Affine Bernstein Problems and Monge-Ampère Equations (2010), Singapore: World Scientific, Singapore · Zbl 1201.58022
[16] Li, A. M.; Xu, R. W., A rigidity theorem for an affine Kähler-Ricci flat graph, Results in Mathematics, 56, 1-4, 141-164 (2009) · Zbl 1182.53049 · doi:10.1007/s00025-009-0398-5
[17] Li, A.-M.; Xu, R., A cubic form differential inequality with applications to affine Kähler-Ricci flat manifolds, Results in Mathematics, 54, 3-4, 329-340 (2009) · Zbl 1179.53010 · doi:10.1007/s00025-009-0366-0
[18] Xu, R. W.; Huang, R. L., On the rigidity theorems for Lagrangian translating solitons in pseudo-Euclidean space I, Acta Mathematica Sinica (English Series), 29, 7, 1369-1380 (2013) · Zbl 1276.53072 · doi:10.1007/s10114-013-1046-2
[19] Pogorelov, A. V., The Minkowski Multidimensional Problem (1978), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0387.53023
[20] Calabi, E., Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, The Michigan Mathematical Journal, 5, 105-126 (1958) · Zbl 0113.30104 · doi:10.1307/mmj/1028998055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.