×

Existence of traveling wave solutions for cholera model. (English) Zbl 1470.92376

Summary: To investigate the spreading speed of cholera, C. T. Codeço’s cholera model [“Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir”, BMC Infect. Dis. 1, No. 1, 1–14 (2001; doi:10.1186/1471-2334-1-1)] is developed by a reaction-diffusion model that incorporates both indirect environment-to-human and direct human-to-human transmissions and the pathogen diffusion. The two transmission incidences are supposed to be saturated with infective density and pathogen density. The basic reproduction number \(R_0\) is defined and the formula for minimal wave speed \(c^*\) is given. It is proved by shooting method that there exists a traveling wave solution with speed \(c\) for cholera model if and only if \(c \geq c^*\).

MSC:

92D30 Epidemiology
PDF BibTeX XML Cite
Full Text: DOI

References:

[2] World Health Organization
[3] Capasso, V.; Paveri-Fontana, S. L., Mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Revue d’Epidemiologie et de Sante Publique, 27, 2, 121-132 (1979)
[4] Codeço, C. T., Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir, BMC Infectious Diseases, 1, 1, article 1 (2001)
[5] Andrews, J. R.; Basu, S., Transmission dynamics and control of cholera in Haiti: an epidemic model, The Lancet, 377, 9773, 1248-1255 (2011)
[6] Goh, K. T.; Teo, S. H.; Lam, S.; Ling, M. K., Person-to-person transmission of cholera in a psychiatric hospital, Journal of Infection, 20, 3, 193-200 (1990)
[7] Weil, A. A.; Khan, A. I.; Chowdhury, F.; LaRocque, R. C.; Faruque, A. S. G.; Ryan, E. T.; Calderwood, S. B.; Qadri, F.; Harris, J. B., Clinical outcomes in household contacts of patients with cholera in Bangladesh, Clinical Infectious Diseases, 49, 10, 1473-1479 (2009)
[8] Tien, J. H.; Earn, D. J. D., Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bulletin of Mathematical Biology, 72, 6, 1506-1533 (2010) · Zbl 1198.92030
[9] Mukandavire, Z.; Liao, S.; Wang, J.; Gaff, H.; Smith, D. L.; Morris, J. G., Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe, Proceedings of the National Academy of Sciences of the United States of America, 108, 21, 8767-8772 (2011)
[10] Tian, J. P.; Wang, J., Global stability for cholera epidemic models, Mathematical Biosciences, 232, 1, 31-41 (2011) · Zbl 1217.92068
[11] Hartley, D. M.; Morris, J. G.; Smith, D. L., Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics?, PLoS Medicine, 3, 1, 63-69 (2006)
[12] Shuai, Z.; van den Driessche, P., Global dynamics of cholera models with differential infectivity, Mathematical Biosciences, 234, 2, 118-126 (2011) · Zbl 1244.92040
[13] Shuai, Z.; Tien, J. H.; van den Driessche, P., Cholera models with hyperinfectivity and temporary immunity, Bulletin of Mathematical Biology, 74, 10, 2423-2445 (2012) · Zbl 1312.92041
[14] Jensen, M. A.; Faruque, S. M.; Mekalanos, J. J.; Levin, B. R., Modeling the role of bacteriophage in the control of cholera outbreaks, Proceedings of the National Academy of Sciences of the United States of America, 103, 12, 4652-4657 (2006) · Zbl 1355.92115
[15] Sanches, R. P.; Ferreira, C. P.; Kraenkel, R. A., The role of immunity and seasonality in cholera epidemics, Bulletin of Mathematical Biology, 73, 12, 2916-2931 (2011) · Zbl 1251.92031
[16] Mutreja, A.; Kim, D. W.; Thomson, N. R.; Connor, T. R.; Lee, J. H.; Kariuki, S.; Croucher, N. J.; Choi, S. Y.; Harris, S. R.; Lebens, M.; Niyogi, S. K.; Kim, E. J.; Ramamurthy, T.; Chun, J.; Wood, J. L. N.; Clemens, J. D.; Czerkinsky, C.; Nair, G. B.; Holmgren, J.; Parkhill, J.; Dougan, G., Evidence for several waves of global transmission in the seventh cholera pandemic, Nature, 477, 7365, 462-465 (2011)
[17] Colwell, R. R., Global climate and infectious disease: the cholera paradigm, Science, 274, 5295, 2025-2031 (1996)
[18] Faruque, S. M.; Islam, M. J.; Ahmad, Q. S.; Faruque, A. S. G.; Sack, D. A.; Nair, G. B.; Mekalanos, J. J., Self-limiting nature of seasonal cholera epidemics: role of host-mediated amplification of phage, Proceedings of the National Academy of Sciences of the United States of America, 102, 17, 6119-6124 (2005)
[19] Aniţa, S.; Capasso, V., Stabilization of a reaction-diffusion system modelling a class of spatially structured epidemic systems via feedback control, Nonlinear Analysis. Real World Applications, 13, 2, 725-735 (2012) · Zbl 1238.93081
[20] Capasso, V., Asymptotic stability for an integro-differential reaction-diffusion system, Journal of Mathematical Analysis and Applications, 103, 2, 575-588 (1984) · Zbl 0595.45020
[21] Capasso, V.; Kunisch, K., A reaction-diffusion system arising in modelling man-environment diseases, Quarterly of Applied Mathematics, 46, 3, 431-450 (1988) · Zbl 0704.35069
[22] Capasso, V.; Maddalena, L., Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases, Journal of Mathematical Biology, 13, 2, 173-184 (1981-1982) · Zbl 0468.92016
[23] Capasso, V.; Wilson, R. E., Analysis of a reaction-diffusion system modeling man-environment-man epidemics, SIAM Journal on Applied Mathematics, 57, 2, 327-346 (1997) · Zbl 0872.35053
[24] Bertuzzo, E.; Azaele, S.; Maritan, A.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A., On the space-time evolution of a cholera epidemic, Water Resources Research, 44, 1 (2008)
[25] Bertuzzo, E.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A., On spatially explicit models of cholera epidemics, Journal of the Royal Society Interface, 7, 43, 321-333 (2010)
[26] Mari, L.; Bertuzzo, E.; Righetto, L.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A., Modelling cholera epidemics: the role of waterways, human mobility and sanitation, Journal of the Royal Society Interface, 9, 67, 376-388 (2012)
[27] Diekmann, O., Thresholds and travelling waves for the geographical spread of infection, Journal of Mathematical Biology, 6, 2, 109-130 (1978) · Zbl 0415.92020
[28] Lewis, M.; Rencławowicz, J.; van den Driessche, P., Traveling waves and spread rates for a West Nile virus model, Bulletin of Mathematical Biology, 68, 1, 3-23 (2006) · Zbl 1334.92414
[29] Radcliffe, J.; Rass, L., The asymptotic speed of propagation of the deterministic nonreducible \(n\)-type epidemic, Journal of Mathematical Biology, 23, 3, 341-359 (1986) · Zbl 0606.92019
[30] Zhao, X.-Q.; Wang, W., Fisher waves in an epidemic model, Discrete and Continuous Dynamical Systems B, 4, 4, 1117-1128 (2004) · Zbl 1097.34022
[31] Xu, D.; Zhao, X.-Q., Bistable waves in an epidemic model, Journal of Dynamics and Differential Equations, 16, 3, 679-707 (2004) · Zbl 1073.34027
[32] Jin, Y.; Zhao, X.-Q., Bistable waves for a class of cooperative reaction-diffusion systems, Journal of Biological Dynamics, 2, 2, 196-207 (2008) · Zbl 1140.92028
[33] Hsu, C.-H.; Yang, T.-S., Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models, Nonlinearity, 26, 1, 121-139 (2013) · Zbl 1264.35255
[34] Dunbar, S. R., Travelling wave solutions of diffusive Lotka-Volterra equations, Journal of Mathematical Biology, 17, 1, 11-32 (1983) · Zbl 0509.92024
[35] Dunbar, S. R., Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in \(R^4\), Transactions of the American Mathematical Society, 286, 2, 557-594 (1984) · Zbl 0556.35078
[36] Li, W.-T.; Wu, S.-L., Traveling waves in a diffusive predator-prey model with Holling type-III functional response, Chaos, Solitons & Fractals, 37, 2, 476-486 (2008) · Zbl 1155.37046
[37] Hsu, C.-H.; Yang, C.-R.; Yang, T.-H.; Yang, T.-S., Existence of traveling wave solutions for diffusive predator-prey type systems, Journal of Differential Equations, 252, 4, 3040-3075 (2012) · Zbl 1252.34036
[38] Huang, W., Traveling wave solutions for a class of predator-prey systems, Journal of Dynamics and Differential Equations, 24, 3, 633-644 (2012) · Zbl 1365.35056
[39] Huang, J.; Lu, G.; Ruan, S., Existence of traveling wave solutions in a diffusive predator-prey model, Journal of Mathematical Biology, 46, 2, 132-152 (2003) · Zbl 1018.92026
[40] Lin, X.; Weng, P.; Wu, C., Traveling wave solutions for a predator-prey system with sigmoidal response function, Journal of Dynamics and Differential Equations, 23, 4, 903-921 (2011) · Zbl 1252.34048
[41] Irving, R. S., Integers, Polynomials, and Rings (2004), New York, NY, USA: Springer, New York, NY, USA
[42] Ma, Z.; Zhou, Y., Qualitative and Stable Method of Ordinary Differential Equations (2005), Beijing, China: Science Press, Beijing, China
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.