×

Existence and uniqueness of globally attractive positive almost periodic solution in a predator-prey dynamic system with Beddington-DeAngelis functional response. (English) Zbl 1472.34100

Summary: This paper is concerned with a predator-prey system with Beddington-DeAngelis functional response on time scales. By using the theory of exponential dichotomy on time scales and fixed point theory based on monotone operator, some simple conditions are obtained for the existence of at least one positive (almost) periodic solution of the above system. Further, by means of Lyapunov functional, the global attractivity of the almost periodic solution for the above continuous system is also investigated. The main results in this paper extend, complement, and improve the previously known result. And some examples are given to illustrate the feasibility and effectiveness of the main results.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
92D25 Population dynamics (general)
34N05 Dynamic equations on time scales or measure chains
34C27 Almost and pseudo-almost periodic solutions to ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
34D09 Dichotomy, trichotomy of solutions to ordinary differential equations
47N20 Applications of operator theory to differential and integral equations

References:

[1] Beddington, J. R., Mutual interference between parasites or predators and its effect on searching efficiency, Journal of Animal Ecology, 44, 331-340 (1975)
[2] DeAngelis, D. L.; Goldstein, R. A.; O’Neill, R. V., A model for trophic interaction, Ecology, 56, 4, 881-892 (1975) · doi:10.2307/1936298
[3] Fan, M.; Kuang, Y., Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response, Journal of Mathematical Analysis and Applications, 295, 1, 15-39 (2004) · Zbl 1051.34033 · doi:10.1016/j.jmaa.2004.02.038
[4] Cantrell, R. S.; Cosner, C., On the dynamics of predator-prey models with the Beddington-DeAngelis functional response, Journal of Mathematical Analysis and Applications, 257, 1, 206-222 (2001) · Zbl 0991.34046 · doi:10.1006/jmaa.2000.7343
[5] Cantrell, R. S.; Cosner, C., Effects of domain size on the persistence of populations in a diffusive food-chain model with Beddington-DeAngelis functional response, Natural Resource Modeling, 14, 3, 335-367 (2001) · Zbl 1005.92035 · doi:10.1111/j.1939-7445.2001.tb00062.x
[6] Hwang, T., Global analysis of the predator-prey system with Beddington-DeAngelis functional response, Journal of Mathematical Analysis and Applications, 281, 1, 395-401 (2003) · Zbl 1033.34052 · doi:10.1016/S0022-247X(02)00395-5
[7] Zhang, J.; Wang, J., Periodic solutions for discrete predator-prey systems with the Beddington-DeAngelis functional response, Applied Mathematics Letters, 19, 12, 1361-1366 (2006) · Zbl 1140.92325 · doi:10.1016/j.aml.2006.02.004
[8] Cui, J.; Takeuchi, Y., Permanence, extinction and periodic solution of predator-prey system with Beddington-DeAngelis functional response, Journal of Mathematical Analysis and Applications, 317, 2, 464-474 (2006) · Zbl 1102.34033 · doi:10.1016/j.jmaa.2005.10.011
[9] Bohner, M.; Fan, M.; Zhang, J., Existence of periodic solutions in predator-prey and competition dynamic systems, Nonlinear Analysis: Real World Applications, 7, 5, 1193-1204 (2006) · Zbl 1104.92057 · doi:10.1016/j.nonrwa.2005.11.002
[10] Fazly, M.; Hesaaraki, M., Periodic solutions for predator-prey systems with Beddington-DeAngelis functional response on time scales, Nonlinear Analysis: Real World Applications, 9, 3, 1224-1235 (2008) · Zbl 1145.92035 · doi:10.1016/j.nonrwa.2007.02.012
[11] Hilger, S., Ein Ma \(β\) kettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten [Ph.D. thesis] (1988), Universität Würzburg · Zbl 0695.34001
[12] Bohner, M.; Peterson, A., Dynamic Equations on Time Scales (2001), Boston, Mass, USA: Birkhäauser, Boston, Mass, USA · Zbl 1021.34005 · doi:10.1007/978-1-4612-0201-1
[13] Kaufmann, E. R.; Raffoul, Y. N., Periodic solutions for a neutral nonlinear dynamical equation on a time scale, Journal of Mathematical Analysis and Applications, 319, 1, 315-325 (2006) · Zbl 1096.34057 · doi:10.1016/j.jmaa.2006.01.063
[14] Li, Y.; Wang, C., Almost periodic functions on time scales and applications, Discrete Dynamics in Nature and Society, 2011 (2011) · Zbl 1232.26055 · doi:10.1155/2011/727068
[15] Zhang, J.; Fan, M.; Zhu, H., Existence and roughness of exponential dichotomies of linear dynamic equations on time scales, Computers & Mathematics with Applications, 59, 8, 2658-2675 (2010) · Zbl 1193.34186 · doi:10.1016/j.camwa.2010.01.035
[16] Li, Y.; Wang, C., Uniformly almost periodic functions and almost periodic solutions to dynamic equations on time scales, Abstract and Applied Analysis, 2011 (2011) · Zbl 1223.34125 · doi:10.1155/2011/341520
[17] Guo, D. J., Nonlinear Functional Analysis, Shandong, China: Shandong Science and Technology Press, Shandong, China
[18] Kostrykin, V.; Oleynik, A., An intermediate value theorem for monotone operators in ordered Banach spaces, Fixed Point Theory and Applications, 2012 (2012) · Zbl 1320.47051 · doi:10.1186/1687-1812-2012-211
[19] Agarwal, R. P.; Bohner, M.; Rehak, P., Half-linear dynamic equations, Nonlinear Analysis and Applications, 1, 1-57 (2003), Dordercht, The Netherlands: Kluwer Academic Publishers, Dordercht, The Netherlands · Zbl 1056.34049
[20] Aulbach, B.; Neidhart, L., Integration on measure chains, Proceedings of the 6h International Conference on Difference Equations, CRC · Zbl 1083.26005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.