×

On properties of meromorphic solutions of certain difference Painlevé III equations. (English) Zbl 1472.39031

Summary: We mainly study the exponents of convergence of zeros and poles of difference and divided difference of transcendental meromorphic solutions for certain difference Painlevé III equations.

MSC:

39A45 Difference equations in the complex domain
39A12 Discrete version of topics in analysis
39A36 Integrable difference and lattice equations; integrability tests
34M55 Painlevé and other special ordinary differential equations in the complex domain; classification, hierarchies
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hayman, W. K., Meromorphic Functions, xiv+191 (1964), Oxford, UK: Clarendon Press, Oxford, UK · Zbl 0115.06203
[2] Yang, L., Value Distribution Theory and Its New Research (1982), Beijing, China: Science Press, Beijing, China
[3] Fuchs, L., Sur quelques équations différentielles linéares du second ordre, Comptes Rendus de l’Académie des Sciences, 141, 555-558 (1905) · JFM 36.0397.02
[4] Gambier, B., Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est a points critiques fixes, Acta Mathematica, 33, 1, 1-55 (1910) · JFM 40.0377.02
[5] Painlevé, P., Mémoire sur les équations différentielles dont l’intégrale générale est uniforme, Bulletin de la Société Mathématique de France, 28, 201-261 (1900) · JFM 31.0337.03
[6] Painlevé, P., Sur les équations différentielles du second ordre et d’ordre supérieur dont l’intégrale générale est uniforme, Acta Mathematica, 25, 1, 1-85 (1902) · JFM 32.0340.01
[7] Ablowitz, M. J.; Segur, H., Exact linearization of a Painlevé transcendent, Physical Review Letters, 38, 20, 1103-1106 (1977)
[8] Chen, B. Q.; Chen, Z. X.; Li, S., Uniqueness theorems on entire functions and their difference operators or shifts, Abstract and Applied Analysis, 2012 (2012) · Zbl 1258.30010
[9] Chiang, Y.-M.; Feng, S.-J., On the Nevanlinna characteristic of \(f(z + \eta)\) and difference equations in the complex plane, Ramanujan Journal, 16, 1, 105-129 (2008) · Zbl 1152.30024
[10] Halburd, R. G.; Korhonen, R. J., Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, Journal of Mathematical Analysis and Applications, 314, 2, 477-487 (2006) · Zbl 1085.30026
[11] Laine, I.; Yang, C.-C., Clunie theorems for difference and \(q\)-difference polynomials, Journal of the London Mathematical Society, 76, 3, 556-566 (2007) · Zbl 1132.30013
[12] Zhang, R. R.; Huang, Z. B., Results on difference analogues of Valiron-Mohon’ko theorem, Abstract and Applied Analysis, 2013 (2013) · Zbl 1283.30067
[13] Ablowitz, M. J.; Halburd, R.; Herbst, B., On the extension of the Painlevé property to difference equations, Nonlinearity, 13, 3, 889-905 (2000) · Zbl 0956.39003
[14] Halburd, R. G.; Korhonen, R. J., Finite-order meromorphic solutions and the discrete Painlevé equations, Proceedings of the London Mathematical Society, 94, 2, 443-474 (2007) · Zbl 1119.39014
[15] Chen, Z.-X.; Shon, K. H., Value distribution of meromorphic solutions of certain difference Painlevé equations, Journal of Mathematical Analysis and Applications, 364, 2, 556-566 (2010) · Zbl 1183.30026
[16] Ronkainen, O., Meromorphic solutions of difference Painlevé equations, Academiæ Scientiarum Fennicæ. Annales. Mathematica. Dissertationes, 155, 59 (2010) · Zbl 1219.39001
[17] Zhang, J. L.; Yang, L. Z., Meromorphic solutions of Painlevé III difference equations, Acta Mathematica Sinica, 57, 1, 181-188 (2014) · Zbl 1313.30137
[18] Mokhon’ko, A. Z., On the Nevanlinna characteristics of some meromorphic functions, Theory of Functions, Functional Analysis and Their Applications, 14, 83-87 (1971), I zd-vo Khar’kovsk. Un-ta
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.