Modeling peer-to-peer botnet on scale-free network. (English) Zbl 1470.68032

Summary: Peer-to-peer (P2P) botnets have emerged as one of the serious threats to Internet security. To prevent effectively P2P botnet, in this paper, a mathematical model which combines the scale-free trait of Internet with the formation of P2P botnet is presented. Explicit mathematical analysis demonstrates that the model has a globally stable endemic equilibrium when infection rate is greater than a critical value. Meanwhile, we find that, in scale-free network, the critical value is very little. Hence, it is unrealistic to completely dispel the P2P botnet. Numerical simulations show that one can take effective countermeasures to reduce the scale of P2P botnet or delay its outbreak. Our findings can provide meaningful instruction to network security management.


68M11 Internet topics
34C60 Qualitative investigation and simulation of ordinary differential equation models


Full Text: DOI


[1] Song, L.-P.; Jin, Z.; Sun, G.-Q., Modeling and analyzing of botnet interactions, Physica A, 390, 2, 347-358 (2011) · doi:10.1016/j.physa.2010.10.001
[2] Wang, P.; Aslam, B.; Zou, C. C., Peer-To-Peer Botnets: The Next Generation of Botnet Attacks (2010), Orlando, Fla, USA: School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Fla, USA
[3] Grizzard, J. B.; Sharma, V.; Nunnery, C.; Kang, B. B. H., Peer-to-peer botnet: overview and case study, Proceedings of the 1st Workshop on Hot Topics in Understanding Botnets
[4] Han, Q. T.; Yu, W. Q.; Zhang, Y. Y.; Zhao, Z. W., Modeling and evaluating of typical advanced peer-to-peer botnet, Performance Evaluation, 72, 1-15 (2014)
[5] Holz, T.; Steiner, M.; Dahl, F.; Biersack, E.; Freiling, F., Measurements and mitigation of peer-to- peer-based botnets: a case study on storm worm, Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and Emergent Threats
[6] Yan, G.; Ha, D. T.; Eidenbenz, S., AntBot: anti-pollution peer-to-peer botnets, Computer Networks, 55, 8, 1941-1956 (2011) · doi:10.1016/j.comnet.2011.02.006
[7] Kolesnichenko, A.; Remke, A.; Boer, P. T.; Haverkort, B. R., Comparison of the mean-field approach and simulation in a peer-to-peer botnet case study, Computer Performance Engineering, 6977, 133-147 (2011) · doi:10.1007/978-3-642-24749-1_11
[8] van Ruitenbeek, E.; Sanders, W. H., Modeling peer-to-peer botnets, Proceedings of the 5th International Conference on the Quantitative Evaluation of Systems (QEST ’08) · doi:10.1109/QEST.2008.43
[9] Wang, P.; Sparks, S.; Zou, C. C., An advanced hybrid peer-to-peer botnet, IEEE Transactions on Dependable and Secure Computing, 7, 2, 113-127 (2010) · doi:10.1109/TDSC.2008.35
[10] Schaffer, G. P., Worms and viruses and botnets, Oh My! Rational responses to emerging Internet threats, IEEE Security and Privacy, 4, 3, 52-58 (2006) · doi:10.1109/MSP.2006.83
[11] Jiang, H. L.; Shao, X. X. . L., Detecting P2P botnets by discovering flow dependency in C&C traffic, Peer-To-Peer Networking and Applications, 1-12 (2012)
[12] Khosroshahy, M.; Ali, M. K.; Qiu, D. Y., The SIC botnet lifecycle model: a step beyond traditional epidemiological models, Computer Networks, 57, 404-421 (2013)
[13] Han, X.; Li, Y.-H.; Feng, L.-P.; Song, L.-P., Influence of removable devices’ heterouse on the propagation of malware, Abstract and Applied Analysis, 2013 (2013) · Zbl 1291.68030 · doi:10.1155/2013/296940
[14] Li, Y.; Pan, J.; Song, L.; Jin, Z., The influence of user protection behaviors on the control of internet worm propagation, Abstract and Applied Analysis, 2013 (2013) · Zbl 1291.68034 · doi:10.1155/2013/531781
[15] Song, L.-P.; Han, X.; Liu, D.-M.; Jin, Z., Adaptive human behavior in a two-worm interaction model, Discrete Dynamics in Nature and Society, 2012 (2012) · Zbl 1253.68051 · doi:10.1155/2012/828246
[16] Song, L.-P.; Jin, Z.; Sun, G.-Q.; Zhang, J.; Han, X., Influence of removable devices on computer worms: dynamic analysis and control strategies, Computers & Mathematics with Applications, 61, 7, 1823-1829 (2011) · Zbl 1219.37065 · doi:10.1016/j.camwa.2011.02.010
[17] Yang, L.-X.; Yang, X., Propagation behavior of virus codes in the situation that infected computers are connected to the internet with positive probability, Discrete Dynamics in Nature and Society, 2012 (2012) · Zbl 1248.68077 · doi:10.1155/2012/693695
[18] Zhu, Q.; Yang, X.; Yang, L.-X.; Zhang, X., A mixing propagation model of computer viruses and countermeasures, Nonlinear Dynamics, 73, 3, 1433-1441 (2013) · Zbl 1281.68056 · doi:10.1007/s11071-013-0874-z
[19] Zhu, Q.; Yang, X.; Ren, J., Modeling and analysis of the spread of computer virus, Communications in Nonlinear Science and Numerical Simulation, 17, 12, 5117-5124 (2012) · Zbl 1261.93012 · doi:10.1016/j.cnsns.2012.05.030
[20] Zhu, Q.; Yang, X.; Yang, L.-X.; Zhang, C., Optimal control of computer virus under a delayed model, Applied Mathematics and Computation, 218, 23, 11613-11619 (2012) · Zbl 1278.49045 · doi:10.1016/j.amc.2012.04.092
[21] Yang, L.-X.; Yang, X., The effect of infected external computers on the spread of viruses: a compartment modeling study, Physica A, 392, 24, 6523-6535 (2013) · Zbl 1395.34063 · doi:10.1016/j.physa.2013.08.024
[22] Yang, L.-X.; Yang, X., The spread of computer viruses over a reduced scale-free network, Physica A, 396, 173-184 (2014) · Zbl 1395.34058 · doi:10.1016/j.physa.2013.11.026
[23] Dagon, D.; Zou, C. C.; Lee, W. K., Modeling botnet propagation using time and zones, Proceedings of the 13th Annual Network and Distributed System Security Symposium (NDSS ’06)
[24] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.-U., Complex networks: structure and dynamics, Physics Reports, 424, 4-5, 175-308 (2006) · Zbl 1371.82002 · doi:10.1016/j.physrep.2005.10.009
[25] Moreno, Y.; Pastor-Satorras, R.; Vespignani, A., Epidemic outbreaks in complex heterogeneous networks, The European Physical Journal B: Condensed Matter and Complex Systems, 26, 4, 521-529 (2002) · doi:10.1007/s10051-002-8996-y
[26] Yang, R.; Wang, B.-H.; Ren, J.; Bai, W.-J.; Shi, Z.-W.; Wang, W.-X.; Zhou, T., Epidemic spreading on heterogeneous networks with identical infectivity, Physics Letters A, 364, 3-4, 189-193 (2007) · Zbl 1203.05144 · doi:10.1016/j.physleta.2006.12.021
[27] Robinson, R. C., An introduction to Dynamical Systems: Continuous and Discrete (2004), Upper Saddle River, NJ, USA: Pearson Prentice Hall, Upper Saddle River, NJ, USA · Zbl 1073.37001
[28] Wang, L.; Dai, G.-Z., Global stability of virus spreading in complex heterogeneous networks, SIAM Journal on Applied Mathematics, 68, 5, 1495-1502 (2008) · Zbl 1146.92031 · doi:10.1137/070694582
[29] Yang, M.; Fu, X. C.; Wu, Q. C., Global stability of SIS epidemic model with infective medium on complex networks, Journal of Systems Engineering, 25, 767-772 (2011) · Zbl 1240.92006
[30] Kephart, J. O.; Sorkin, G. B.; Chess, D. M.; White, S. R., Fighting computer viruses, Scientific American, 277, 5, 88-93 (1997) · doi:10.1038/scientificamerican1197-88
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.