Liu, Xiaoji; Zhang, Miao; Yu, Yaoming Note on the invariance properties of operator products involving generalized inverses. (English) Zbl 1472.47001 Abstr. Appl. Anal. 2014, Article ID 213458, 9 p. (2014). Summary: We investigate further the invariance properties of the bounded linear operator product \(A C^{\left(1\right)} B^{\left(1\right)} D\) and its range with respect to the choice of the generalized inverses \(X\) and \(Y\) of bounded linear operators. Also, we discuss the range inclusion invariance properties of the operator product involving generalized inverses. Cited in 2 Documents MSC: 47A05 General (adjoints, conjugates, products, inverses, domains, ranges, etc.) Keywords:invariance properties; operator product; generalised inverse; range inclusion invariance PDFBibTeX XMLCite \textit{X. Liu} et al., Abstr. Appl. Anal. 2014, Article ID 213458, 9 p. (2014; Zbl 1472.47001) Full Text: DOI OA License References: [1] Ben-Israel, A.; Greville, T. N. E., Generalized Inverses: Theory and Applications. Generalized Inverses: Theory and Applications, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 15 (2003), New York: Springer, New York · Zbl 1026.15004 [2] Rao, C. R.; Mitra, S. K., Generalized Inverse of Matrices and Its Applications (1971), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0236.15004 [3] Penrose, R., A generalized inverse for matrices, Proceedings of Cambridge Philosophical Society, 51, 406-413 (1955) · Zbl 0065.24603 [4] Wang, G.; Wei, Y.; Qiao, S., Generalized Inverses: Theory and Computations (2004), Beijing, China: Science Press, Beijing, China [5] Baksalary, J. K.; Kala, R., Range invariance of certain matrix products, Linear and Multilinear Algebra, 14, 1, 89-96 (1983) · Zbl 0523.15006 · doi:10.1080/03081088308817544 [6] Baksalary, J. K.; Mathew, T., Rank invariance criterion and its application to the unified theory of least squares, Linear Algebra and Its Applications, 127, 393-401 (1990) · Zbl 0694.15003 · doi:10.1016/0024-3795(90)90352-D [7] Baksalary, J. K.; Pukkila, T., A note on invariance of the eigenvalues, singular values, and norms of matrix products involving generalized inverses, Linear Algebra and Its Applications, 165, 125-130 (1992) · Zbl 0743.15005 · doi:10.1016/0024-3795(92)90232-Y [8] Baksalary, J. K.; Baksalary, O. M., An invariance property related to the reverse order law, Linear Algebra and Its Applications, 410, 64-69 (2005) · Zbl 1085.15004 · doi:10.1016/j.laa.2005.08.006 [9] Groß, J.; Tian, Y., Invariance properties of a triple matrix product involving generalized inverses, Linear Algebra and Its Applications, 417, 1, 94-107 (2006) · Zbl 1105.15005 · doi:10.1016/j.laa.2006.03.026 [10] Xiong, Z.; Qin, Y., Invariance properties of an operator product involving generalized inverses, Electronic Journal of Linear Algebra, 22, 694-703 (2011) · Zbl 1229.47003 [11] Djordjević, D. S.; Dinčić, N. Č., Reverse order law for the Moore-Penrose inverse, Journal of Mathematical Analysis and Applications, 361, 1, 252-261 (2010) · Zbl 1175.47003 · doi:10.1016/j.jmaa.2009.08.056 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.