×

Super-Hamiltonian structures and conservation laws of a new six-component super-Ablowitz-Kaup-Newell-Segur hierarchy. (English) Zbl 1472.37076

Summary: A six-component super-Ablowitz-Kaup-Newell-Segur (-AKNS) hierarchy is proposed by the zero curvature equation associated with Lie superalgebras. Supertrace identity is used to furnish the super-Hamiltonian structures for the resulting nonlinear superintegrable hierarchy. Furthermore, we derive the infinite conservation laws of the first two nonlinear super-AKNS equations in the hierarchy by utilizing spectral parameter expansions.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K06 General theory of infinite-dimensional Hamiltonian and Lagrangian systems, Hamiltonian and Lagrangian structures, symmetries, conservation laws
17B80 Applications of Lie algebras and superalgebras to integrable systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ablowitz, M. J.; Kaup, D. J.; Newell, A. C.; Segur, H., The inverse scattering transform-Fourier analysis for nonlinear problems, Studies in Applied Mathematics, 53, 4, 249-315 (1974) · Zbl 0408.35068
[2] You, F. C.; Xia, T. C., Integrable couplings of the generalized AKNS hierarchy with an arbitrary function and its bi-Hamiltonian structure, International Journal of Theoretical Physics, 46, 12, 3159-3168 (2007) · Zbl 1136.81385 · doi:10.1007/s10773-007-9430-2
[3] Ma, W. X.; Ma, W. X.; Kaup, D., Integrable couplings and matrix loop algebra, Nonlinear and Modern Mathematical Physics. Nonlinear and Modern Mathematical Physics, AIP Conference Proceedings, 1562, 105-122 (2013), Melville, NY, USA: American Institute of Physics, Melville, NY, USA
[4] Zakharov, V. E.; Shabat, A. B., Interaction between solitons in a stable medium, Soviet Physics-JETP, 34, 62-69 (1973)
[5] Kupershmidt, B. A., A super Korteweg-de Vries equation: an integrable system, Physics Letters A, 102, 5-6, 213-215 (1984) · doi:10.1016/0375-9601(84)90693-5
[6] Gürses, M.; Oǧuz, Ö., A super AKNS scheme, Physics Letters A, 108, 9, 437-440 (1985) · doi:10.1016/0375-9601(85)90033-7
[7] Gürses, M.; Oğuz, Ö., A super soliton connection, Letters in Mathematical Physics, 11, 3, 235-246 (1986) · Zbl 0608.35072 · doi:10.1007/BF00400221
[8] Li, Y. S.; Zhang, L. N., Hamiltonian structure of the super evolution equation, Journal of Mathematical Physics, 31, 2, 470-475 (1990) · Zbl 0705.58024 · doi:10.1063/1.528881
[9] Ma, W.; He, J.; Qin, Z., A supertrace identity and its applications to superintegrable systems, Journal of Mathematical Physics, 49, 3 (2008) · Zbl 1153.81398 · doi:10.1063/1.2897036
[10] You, F. C., Nonlinear super integrable Hamiltonian couplings, Journal of Mathematical Physics, 52, 12 (2011) · Zbl 1273.81150 · doi:10.1063/1.3669484
[11] You, F. C., Nonlinear super integrable couplings of super Dirac hierarchy and its super Hamiltonian structures, Communications in Theoretical Physics, 57, 6, 961-966 (2012) · Zbl 1247.37071 · doi:10.1088/0253-6102/57/6/06
[12] Zhang, J.; You, F. C.; Zhao, Y., A new super extension of Dirac hierarchy, Abstract and Applied Analysis, 2014 (2014) · Zbl 1470.37090 · doi:10.1155/2014/472101
[13] Liu, Q. P., Darboux transformations for supersymmetric Korteweg-de Vries equations, Letters in Mathematical Physics, 35, 2, 115-122 (1995) · Zbl 0834.35110 · doi:10.1007/BF00750761
[14] Hu, X. B., A powerful approach to generate new integrable systems, Journal of Physics A: Mathematical and General, 27, 7, 2497-2514 (1994) · Zbl 0838.58018 · doi:10.1088/0305-4470/27/7/026
[15] Gurses, M.; Oguz, O., A super soliton connection, Letters in Mathematical Physics, 11, 3, 235-246 (1986) · Zbl 0608.35072 · doi:10.1007/BF00400221
[16] Gurses, M.; Salihoglu, S.; Oguz, O., Integrable nonlinear partial differential equations on homogenous spaces, International Journal of Modern Physics A, 5, 9, 1801-1817 (1990) · doi:10.1142/S0217751X90000842
[17] Hu, X. B., An approach to generate superextensions of integrable systems, Journal of Physics A: Mathematical and General, 30, 2, 619-632 (1997) · Zbl 0947.37039 · doi:10.1088/0305-4470/30/2/023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.