×

The dynamics and synchronization of a fractional-order system with complex variables. (English) Zbl 1472.34102

Summary: A fractional-order system with complex variables is proposed. Firstly, the dynamics of the system including symmetry, equilibrium points, chaotic attractors, and bifurcations with variation of system parameters and derivative order are studied. The routes leading to chaos including the period-doubling and tangent bifurcations are obtained. Then, based on the stability theory of fractional-order systems, the scheme of synchronization for the fractional-order complex system is presented. By designing appropriate controllers, the synchronization for the system is realized. Numerical simulations are carried out to demonstrate the effectiveness of the proposed scheme.

MSC:

34D06 Synchronization of solutions to ordinary differential equations
34A08 Fractional ordinary differential equations
34H05 Control problems involving ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations

Software:

RODAS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Li, C. P.; Deng, W. H.; Xu, D., Chaos synchronization of the Chua system with a fractional order, Physica A: Statistical Mechanics and Its Applications, 360, 2, 171-185 (2006) · doi:10.1016/j.physa.2005.06.078
[2] Arena, P.; Caponetto, R.; Fortuna, L.; Porto, D., Chaos in a fractional order Duffing system, Proceedings of the European Conference on Circuit Theory and Design (ECCTD ’97)
[3] Lu, J. G.; Chen, G., A note on the fractional-order Chen system, Chaos, Solitons and Fractals, 27, 3, 685-688 (2006) · Zbl 1101.37307 · doi:10.1016/j.chaos.2005.04.037
[4] Sheu, L. J.; Chen, W. C.; Chen, Y. C.; Weng, W. T., A two-channel secure communication using fractional chaotic systems, World Academy of Science, Engineering and Technology, 65, 1057-1061 (2010)
[5] Kiani-B, A.; Fallahi, K.; Pariz, N.; Leung, H., A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter, Communications in Nonlinear Science and Numerical Simulation, 14, 3, 863-879 (2009) · Zbl 1221.94049 · doi:10.1016/j.cnsns.2007.11.011
[6] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Physical Review Letters, 64, 8, 821-824 (1990) · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[7] Mahmoud, G. M.; Bountis, T.; AbdEl-Latif, G. M.; Mahmoud, E. E., Chaos synchronization of two different chaotic complex Chen and Lü systems, Nonlinear Dynamics, 55, 1-2, 43-53 (2009) · Zbl 1170.70011 · doi:10.1007/s11071-008-9343-5
[8] Mahmoud, G. M.; Mahmoud, E. E., Complete synchronization of chaotic complex nonlinear systems with uncertain parameters, Nonlinear Dynamics, 62, 4, 875-882 (2010) · Zbl 1215.93114 · doi:10.1007/s11071-010-9770-y
[9] Mahmoud, G. M.; Mahmoud, E. E., Synchronization and control of hyperchaotic complex Lorenz system, Mathematics and Computers in Simulation, 80, 12, 2286-2296 (2010) · Zbl 1195.93060 · doi:10.1016/j.matcom.2010.03.012
[10] Wu, G.; Baleanu, D., Discrete fractional logistic map and its chaos, Nonlinear Dynamics, 75, 1-2, 283-287 (2014) · Zbl 1281.34121 · doi:10.1007/s11071-013-1065-7
[11] Wu, G. C.; Baleanu, D., Discrete chaos in fractional delayed logistic maps, Nonlinear Dynamics (2014) · doi:10.1007/s11071-014-1250-3
[12] Wu, G. C.; Baleanu, D., Chaos synchronization of the discrete fractional logistic map, Signal Processing, 102, 96-99 (2014) · doi:10.1016/j.sigpro.2014.02.022
[13] Wu, G. C.; Baleanu, D.; Zeng, S. D., Discrete chaos in fractional sine and standard maps, Physics Letters A, 378, 5-6, 484-487 (2014) · Zbl 1331.37048 · doi:10.1016/j.physleta.2013.12.010
[14] Podlubny, I., Fractional Differential Equations (1999), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0918.34010
[15] Liu, X. J.; Hong, L.; Yang, L. X., Fractional-order complex T system: bifurcations, chaos control, and synchronization, Nonlinear Dynamics, 75, 3, 589-602 (2014) · Zbl 1282.34010 · doi:10.1007/s11071-013-1088-0
[16] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving Ordinary Differential Equations I: Nonstiff Problems. Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Series in Computational Mathematics, 8 (1993), Berlin, Germany: Springer, Berlin, Germany · Zbl 0789.65048
[17] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (1991), Berlin, Germany: Springer, Berlin, Germany · Zbl 0729.65051
[18] Diethelm, K.; Ford, N. J.; Freed, A. D., A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynamics, 29, 1-4, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[19] Charef, A.; Sun, H. H.; Tsao, Y.; Onaral, B., Fractal system as represented by singularity function, IEEE Transactions on Automatic Control, 37, 9, 1465-1470 (1992) · Zbl 0825.58027 · doi:10.1109/9.159595
[20] Li, X.; Chu, Y.; Zhang, J.; Chang, Y., Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor, Chaos, Solitons and Fractals, 41, 5, 2360-2370 (2009) · Zbl 1198.37048 · doi:10.1016/j.chaos.2008.09.011
[21] Golmankhaneh, A. K.; Arefi, R.; Baleanu, D., The proposed modified Liu system with fractional order, Advances in Mathematical Physics, 2013 (2013) · Zbl 1298.37017 · doi:10.1155/2013/186037
[22] Golmankhaneh, A. K.; Roohiyeh, A.; Baleanu, D., Synchronization in a nonidentical fractional order of a proposed modified system, Journal of Vibration and Control (2013) · Zbl 1349.34201 · doi:10.1177/1077546313494953
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.