×

Regularity criterion for the nematic liquid crystal flows in terms of velocity. (English) Zbl 1469.35179

Summary: We study the regularity criterion for the 3D nematic liquid crystal flows in the framework of anisotropic Lebesgue space. More precisely, we proved some sufficient conditions in terms of velocity or the fractional derivative of velocity in one direction.

MSC:

35Q35 PDEs in connection with fluid mechanics
35B65 Smoothness and regularity of solutions to PDEs
76A15 Liquid crystals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ericksen, J. L., Conservation laws for liquid crystals, Transactions of the Society of Rheology: Journal of Rheology, 5, 1, 23-34 (1961) · doi:10.1122/1.548883
[2] Ericksen, J. L., Continuum theory of nematic liquid crystals, Res Mechanica, 21, 4, 381-392 (1987)
[3] Ericksen, J. L., Liquid crystals with variable degree of orientation, Archive for Rational Mechanics and Analysis, 113, 2, 97-120 (1990) · Zbl 0729.76008 · doi:10.1007/BF00380413
[4] Leslie, F., Theory of Flow Phenomenum in Liquid Crystals, 4 (1979), New York, NY, USA: Springer, New York, NY, USA
[5] Lin, F.-H., Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena, Communications on Pure and Applied Mathematics, 42, 6, 789-814 (1989) · Zbl 0703.35173 · doi:10.1002/cpa.3160420605
[6] Lin, F.-H.; Liu, C., Nonparabolic dissipative systems modeling the flow of liquid crystals, Communications on Pure and Applied Mathematics, 48, 5, 501-537 (1995) · Zbl 0842.35084 · doi:10.1002/cpa.3160480503
[7] Liu, Q.; Zhao, J.; Cui, S., A regularity criterion for the three-dimensional nematic liquid crystal flow in terms of one directional derivative of the velocity, Journal of Mathematical Physics, 52, 3 (2011) · Zbl 1315.76006 · doi:10.1063/1.3567170
[8] Fan, J.; Guo, B., Regularity criterion to some liquid crystal models and the Landau-Lifshitz equations in \(R^3\), Science in China A: Mathematics, 51, 10, 1787-1797 (2008) · Zbl 1181.35190 · doi:10.1007/s11425-008-0013-3
[9] Liu, Q.; Zhao, J., Logarithmically improved blow-up criteria for the nematic liquid crystal flows, Nonlinear Analysis: Real World Applications, 16, 178-190 (2014) · Zbl 1297.35188 · doi:10.1016/j.nonrwa.2013.09.017
[10] Huang, T.; Wang, C., Blow up criterion for nematic liquid crystal flows, Communications in Partial Differential Equations, 37, 5, 875-884 (2012) · Zbl 1247.35103 · doi:10.1080/03605302.2012.659366
[11] Lin, F.; Lin, J.; Wang, C., Liquid crystal flows in two dimensions, Archive for Rational Mechanics and Analysis, 197, 1, 297-336 (2010) · Zbl 1346.76011 · doi:10.1007/s00205-009-0278-x
[12] Zhang, Z.; Wang, X.; Yao, Z.-A., Remarks on regularity criteria for the weak solutions of liquid crystals, Journal of Evolution Equations, 12, 4, 801-812 (2012) · Zbl 1259.35050 · doi:10.1007/s00028-012-0155-1
[13] Zhang, Z.; Tang, T.; Liu, L., An Osgood type regularity criterion for the liquid crystal flows, Nonlinear Differential Equations and Applications, 21, 2, 253-262 (2014) · Zbl 1301.35118 · doi:10.1007/s00030-013-0245-y
[14] Galdi, G. P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations, 1 (1994), New York, NY, USA: Springer, New York, NY, USA · Zbl 0949.35004 · doi:10.1007/978-1-4612-5364-8
[15] Galdi, G. P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations, 2 (1994), New York, NY, USA: Springer, New York, NY, USA · Zbl 0949.35004 · doi:10.1007/978-1-4612-5364-8
[16] Penel, P.; Pokorný, M., Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity, Applications of Mathematics, 49, 5, 483-493 (2004) · Zbl 1099.35101 · doi:10.1023/B:APOM.0000048124.64244.7e
[17] Cao, C.; Titi, E. S., Regularity criteria for the three-dimensional Navier-Stokes equations, Indiana University Mathematics Journal, 57, 6, 2643-2661 (2008) · Zbl 1159.35053 · doi:10.1512/iumj.2008.57.3719
[18] Gala, S., Remarks on regularity criterion for weak solutions to the Navier-Stokes equations in terms of the gradient of the pressure, Applicable Analysis, 92, 1, 96-103 (2013) · Zbl 1284.35313 · doi:10.1080/00036811.2011.593172
[19] Jia, X.; Zhou, Y., Remarks on regularity criteria for the Navier-Stokes equations via one velocity component, Nonlinear Analysis: Real World Applications, 15, 239-245 (2014) · Zbl 1297.35168 · doi:10.1016/j.nonrwa.2013.08.002
[20] Zhou, Y.; Pokorný, M., On the regularity of the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, 23, 5, 1097-1107 (2010) · Zbl 1190.35179 · doi:10.1088/0951-7715/23/5/004
[21] Zhang, Z., A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component, Communications on Pure and Applied Analysis, 12, 1, 117-124 (2013) · Zbl 1278.35184 · doi:10.3934/cpaa.2013.12.117
[22] Zhang, Z.; Yao, Z.-A.; Lu, M.; Ni, L., Some Serrin-type regularity criteria for weak solutions to the Navier-Stokes equations, Journal of Mathematical Physics, 52, 5 (2011) · Zbl 1317.35180 · doi:10.1063/1.3589966
[23] Adams, R. A., Sobolev Spaces (1975), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0314.46030
[24] Zheng, X., A regularity criterion for the tridimensional Navier-Stokes equations in term of one velocity component, Journal of Differential Equations, 256, 1, 283-309 (2014) · Zbl 1331.35266 · doi:10.1016/j.jde.2013.09.002
[25] Ladyzhenskaya, O. A., Mathematical Theory of Viscous Incompressible Flow (1969), New York, NY, USA: Gordon and Breach, New York, NY, USA · Zbl 0184.52603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.