×

Lower estimates for certain harmonic functions in the half space. (English) Zbl 1468.31005

Summary: We will give the growth properties of harmonic functions of order greater than one in a half space, which generalize the result obtained by B. Levin in a half plane.

MSC:

31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Levin, B. Ya., Lectures on Entire Functions, 150 (1996), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 0856.30001
[2] Nikol’skiĭ, N. K., Selected Problems of Weighted Approximation and Spectral Analysis. Selected Problems of Weighted Approximation and Spectral Analysis, English Translation Proceedings of the Steklov Institute of Mathematics 1974, 120 (1976), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 0342.41028
[3] Su, B., Dirichlet problem for the Schrödinger operator in a half space, Abstract and Applied Analysis, 2012 (2012) · Zbl 1246.35072 · doi:10.1155/2012/578197
[4] Su, B. Y., Growth properties of harmonic functions in the upper half-space, Acta Mathematica Sinica, 55, 6, 1095-1100 (2012) · Zbl 1274.31003
[5] Krasichkov-Ternovskiĭ, I. F., Estimates for the subharmonic difference of sub-harmonic functions. II, Mathematics of the USSR-Sbornik, 32, 1, 32-59 (1977) · Zbl 0386.31001
[6] Carleman, T., Über die approximation analytischer funktionen durch lineare aggregate von vorgegebenen potenzen, Arkiv för Matematik, Astronomi Och Fysik, 17, 1-30 (1923) · JFM 49.0708.03
[7] Levin, B., Distribution of Zeros of Entire Functions. Distribution of Zeros of Entire Functions, Translations of Mathematical Monographs, 5 (1980), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 0152.06703
[8] Ren, Y. D., Solving integral representations problems for the stationary Schrödinger Equation, Abstract and Applied Analysis, 2013 (2013) · Zbl 1470.35151 · doi:10.1155/2013/715252
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.