Chen, Pingyan; Ma, Xiaofang; Sung, Soo Hak On complete convergence and strong law for weighted sums of i.i.d. random variables. (English) Zbl 1469.60090 Abstr. Appl. Anal. 2014, Article ID 251435, 7 p. (2014). Summary: We improve and generalize the result of W. F. Stout [Almost sure convergence. New York, NY: Academic Press (1974; Zbl 0321.60022), Theorem 4.1.3]. In particular, the sharp moment conditions are obtained and some well-known results can be obtained as special cases of the main result. The method of the proof is completely different from that in [loc. cit.]. We also improve and generalize [D. Li et al., J. Theor. Probab. 8, No. 1, 49–76 (1995; Zbl 0814.60026)] strong law for weighted sums of i.i.d.random variables. Cited in 7 Documents MSC: 60F15 Strong limit theorems Keywords:strong law for weighted sums of i.i.d.random variables Citations:Zbl 0321.60022; Zbl 0814.60026 PDF BibTeX XML Cite \textit{P. Chen} et al., Abstr. Appl. Anal. 2014, Article ID 251435, 7 p. (2014; Zbl 1469.60090) Full Text: DOI References: [1] Stout, W. F., Almost Sure Convergence (1974), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0321.60022 [2] Stout, W. F., Some results on the complete and almost sure convergence of linear combinations of independent random variables and martingale differences, Annals of Mathematical Statistics, 39, 1549-1562 (1968) · Zbl 0165.52702 [3] Hsu, P. L.; Robbins, H., Complete convergence and the law of large numbers, Proceedings of the National Academy of Sciences of the United States of America, 33, 25-31 (1947) · Zbl 0030.20101 [4] Sung, S. H., Complete convergence for weighted sums of arrays of rowwise independent \(B\)-valued random variables, Stochastic Analysis and Applications, 15, 2, 255-267 (1997) · Zbl 0902.60011 [5] Cheng, F. Y.; Wang, Y. B., Complete convergence for weighted sums of arrays of \(B\)-valued random variables, Journal of Mathematical Research and Exposition, 24, 4, 665-669 (2004) · Zbl 1063.60003 [6] Wu, Q., Complete convergence for negatively dependent sequences of random variables, Journal of Inequalities and Applications, 2010 (2010) · Zbl 1202.60050 [7] Sung, S. H., Complete convergence for weighted sums of negatively dependent random variables, Statistical Papers, 53, 1, 73-82 (2012) · Zbl 1314.62096 [8] Katz, M. L., The probability in the tail of a distribution, Annals of Mathematical Statistics, 34, 312-318 (1963) · Zbl 0209.49503 [9] Baum, L. E.; Katz, M., Convergence rates in the law of large numbers, Transactions of the American Mathematical Society, 120, 108-123 (1965) · Zbl 0142.14802 [10] Lai, T. L., Limit theorems for delayed sums, Annals of Probability, 2, 432-440 (1974) · Zbl 0305.60009 [11] Li, D. L.; Rao, M. B.; Jiang, T. F.; Wang, X. C., Complete convergence and almost sure convergence of weighted sums of random variables, Journal of Theoretical Probability, 8, 1, 49-76 (1995) · Zbl 0814.60026 [12] Jing, B.-Y.; Liang, H.-Y., Strong limit theorems for weighted sums of negatively associated random variables, Journal of Theoretical Probability, 21, 4, 890-909 (2008) · Zbl 1162.60008 [13] Budsaba, K.; Chen, P.; Panishkan, K.; Volodin, A., Strong laws for certain types of \(U\)-statistics based on negatively associated random variables, Siberian Advances in Mathematics, 19, 4, 225-232 (2009) [14] Thanh, L. V.; Yin, G., Almost sure and complete convergence of randomly weighted sums of independent random elements in Banach spaces, Taiwanese Journal of Mathematics, 15, 4, 1759-1781 (2011) · Zbl 1246.60046 [15] Bingham, N. H.; Goldie, C. M.; Teugels, J. L., Regular Variation, 27 (1987), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0617.26001 [16] Hu, T. C.; Weber, N. C., On the rate of convergence in the strong law of large numbers for arrays, Bulletin of the Australian Mathematical Society, 45, 3, 479-482 (1992) · Zbl 0739.60025 [17] Qi, Y. C., On strong convergence of arrays, Bulletin of the Australian Mathematical Society, 50, 2, 219-223 (1994) · Zbl 0816.60030 [18] Li, D. L.; Rao, M. B.; Tomkins, R. J., A strong law for \(B\)-valued arrays, Proceedings of the American Mathematical Society, 123, 10, 3205-3212 (1995) · Zbl 0856.60008 [19] Embrechts, P.; Maejima, M., The central limit theorem for summability methods of i.i.d. random variables, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 68, 2, 191-204 (1984) · Zbl 0535.60018 [20] Lai, T. L., Summability methods for independent identically distributed random variables, Proceedings of the American Mathematical Society, 45, 253-261 (1974) · Zbl 0339.60048 [21] Chen, P.; Gan, S., Limiting behavior of weighted sums of i.i.d. random variables, Statistics & Probability Letters, 77, 16, 1589-1599 (2007) · Zbl 1131.60020 [22] Sakhanenko, A. I., On unimprovable estimates of the rate of convergence in the invariance principle, Colloquia Mathematica Societatis János Bolyai, 779-783 (1980), Budapest, Hungary: Nonparametric Statistical Inference, Budapest, Hungary [23] Sakhanenko, A. I.; Borovkov, A. A., On estimates of the rate of convergence in the invariance principle, Advances in Probability Theory: Limit Theorems and Related Problems, 124-135 (1984), New York, NY, USA: Springer, New York, NY, USA [24] Sakhanenko, A. I.; Borovkor, A. A., Convergence rate in the invariance principle for nonidentically distributed variables with exponential moments, Advances in Probability Theory: Limit Theorems for Sums of Random Variables, 2-73 (1985), New York, NY, USA: Springer, New York, NY, USA [25] Csörgő, M.; Szyszkowicz, B.; Wang, Q., Donsker’s theorem for self-normalized partial sums processes, The Annals of Probability, 31, 3, 1228-1240 (2003) · Zbl 1045.60020 [26] Jiang, Y.; Zhang, L. X., Precise rates in the law of iterated logarithm for the moment of i.i.d. random variables, Acta Mathematica Sinica, 22, 3, 781-792 (2006) · Zbl 1103.60030 [27] Chen, P. Y.; Wang, D. C., Convergence rates for probabilities of moderate deviations for moving average processes, Acta Mathematica Sinica, 24, 4, 611-622 (2008) · Zbl 1159.60015 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.