×

A novel four-wing hyperchaotic complex system and its complex modified hybrid projective synchronization with different dimensions. (English) Zbl 1472.37046

Summary: We introduce a new Dadras system with complex variables which can exhibit both four-wing hyperchaotic and chaotic attractors. Some dynamic properties of the system have been described including Lyapunov exponents, fractal dimensions, and Poincaré maps. More importantly, we focus on a new type of synchronization method of modified hybrid project synchronization with complex transformation matrix (CMHPS) for different dimensional hyperchaotic and chaotic complex systems with complex parameters, where the drive and response systems can be asymptotically synchronized up to a desired complex transformation matrix, not a diagonal matrix. Furthermore, CMHPS between the novel hyperchaotic Dadras complex system and other two different dimensional complex chaotic systems is provided as an example to discuss increased order synchronization and reduced order synchronization, respectively. Numerical results verify the feasibility and effectiveness of the presented schemes.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37N35 Dynamical systems in control
34D06 Synchronization of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lorenz, E. N., Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20, 130-141 (1963) · Zbl 1417.37129
[2] Tritton, D. J., Physical Fluid Dynamics, xviii+519 (1988), Clarendon Press
[3] Gibbon, J. D.; McGuinness, M. J., The real and complex Lorenz equations in rotating fluids and lasers, Physica D. Nonlinear Phenomena, 5, 1, 108-122 (1982) · Zbl 1194.76280 · doi:10.1016/0167-2789(82)90053-7
[4] Fowler, A. C.; McGuinness, M. J.; Gibbon, J. D., The complex Lorenz equations, Physica D. Nonlinear Phenomena, 4, 2, 139-163 (1981/82) · Zbl 1194.37039 · doi:10.1016/0167-2789(82)90057-4
[5] Rauh, A.; Hannibal, L.; Abraham, N. B., Global stability properties of the complex Lorenz model, Physica D. Nonlinear Phenomena, 99, 1, 45-58 (1996) · Zbl 0887.34048 · doi:10.1016/S0167-2789(96)00129-7
[6] Mahmoud, G. M.; Al-Kashif, M. A.; Aly, S. A., Basic properties and chaotic synchronization of complex Lorenz system, International Journal of Modern Physics C, 18, 2, 253-265 (2007) · Zbl 1115.37035 · doi:10.1142/S0129183107010425
[7] Mahmoud, G. M.; Bountis, T.; Mahmoud, E. E., Active control and global synchronization of the complex Chen and Lü systems, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 17, 12, 4295-4308 (2007) · Zbl 1146.93372 · doi:10.1142/S0218127407019962
[8] Nayfeh, A. H.; Mook, D. T., Nonlinear Oscillations, xiv+704 (1979), New York, NY, USA: Wiley, New York, NY, USA · Zbl 0418.70001
[9] Newell, A. C.; Moloney, J. V., Nonlinear Optics, xii+436 (1992), Reading, Mass, USA: Addison-Wesley, Reading, Mass, USA
[10] Rozhanskii, V. A.; Tsendin, L. D., Transport Phenomena in Partially Ionized Plasma (2001), London, UK: Taylor and Francis, London, UK
[11] Cveticanin, L., Resonant vibrations of nonlinear rotors, Mechanism and Machine Theory, 30, 4, 581-588 (1995)
[12] Dilao, R.; Alves-Pires, R., Nonlinear Dynamics in Particle Accelerators (1996), Singapore: World Scientific, Singapore · Zbl 0924.58091
[13] Mahmoud, G. M., Approximate solutions of a class of complex nonlinear dynamical systems, Physica A. Statistical Mechanics and Its Applications, 253, 1, 211-222 (1998)
[14] Cveticanin, L., Analytic approach for the solution of the complex-valued strong non-linear differential equation of Duffing type, Physica A. Statistical Mechanics and Its Applications, 297, 3-4, 348-360 (2001) · Zbl 0969.34501 · doi:10.1016/S0378-4371(01)00228-X
[15] Mahmoud, G. M.; Mohamed, A. A.; Aly, S. A., Strange attractors and chaos control in periodically forced complex Duffing’s oscillators, Physica A. Statistical Mechanics and Its Applications, 292, 1-4, 193-206 (2001) · Zbl 0972.37054 · doi:10.1016/S0378-4371(00)00590-2
[16] Mahmoud, G. M.; Bountis, T., The dynamics of systems of complex nonlinear oscillators: a review, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 14, 11, 3821-3846 (2004) · Zbl 1091.34524 · doi:10.1142/S0218127404011624
[17] Mahmoud, G. M.; Mahmoud, E. E., Synchronization and control of hyperchaotic complex Lorenz system, Mathematics and Computers in Simulation, 80, 12, 2286-2296 (2010) · Zbl 1195.93060 · doi:10.1016/j.matcom.2010.03.012
[18] Liu, P.; Liu, S. T., Robust adaptive full state hybrid synchronization of chaotic complex systems with unknown parameters and external disturbances, Nonlinear Dynamics, 70, 1, 585-599 (2012) · doi:10.1007/s11071-012-0479-y
[19] Hu, M. F.; Xu, Z. Y.; Zhang, R., Full state hybrid projective synchronization in continuous-time chaotic (hyperchaotic) systems, Communications in Nonlinear Science and Numerical Simulation, 13, 2, 456-464 (2008) · Zbl 1123.37013 · doi:10.1016/j.cnsns.2006.05.003
[20] Chu, Y.; Chang, Y. X.; Zhang, J. G.; Li, X. F.; An, X. L., Full state hybrid projective synchronization in hyperchaotic systems, Chaos, Solitons and Fractals, 42, 3, 1502-1510 (2009) · Zbl 1198.93010
[21] Zhang, F. F.; Liu, S. T., Full state hybrid projective synchronization and parameters identification for uncertain chaotic (hyperchaotic) complex systems, Journal of Computational and Nonlinear Dynamics, 9 (2014)
[22] Zhang, F. F.; Liu, S. T.; Yu, W. Y., Modified projective synchronization with complex scaling factors of uncertain real chaos and complex chaos, Chinese Physics B, 22 (2013)
[23] Mahmoud, G. M.; Mahmoud, E. E., Complex modified projective synchronization of two chaotic complex nonlinear systems, Nonlinear Dynamics, 73, 4, 2231-2240 (2013) · Zbl 1281.34074 · doi:10.1007/s11071-013-0937-1
[24] Li, Z. G.; Xu, D. L., A secure communication scheme using projective chaos synchronization, Chaos, Solitons and Fractals, 22, 2, 477-481 (2004) · Zbl 1060.93530
[25] Wu, Z. Y.; Chen, G. R.; Fu, X. C., Synchronization of a network coupled with complex-variable chaotic systems, Chaos, 22, 2 (2012) · Zbl 1331.34117 · doi:10.1063/1.4717525
[26] Zhang, Y.; Jiang, J. J., Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations, Journal of Sound and Vibration, 316, 1-5, 248-262 (2008) · doi:10.1016/j.jsv.2008.02.026
[27] Mahmoud, G. M.; Mahmoud, E. E.; Arafa, A. A., On projective synchronization of hyperchaotic complex nonlinear systems based on passive theory for secure communications, Physica Scripta, 87, 5 (2013) · Zbl 1278.93133
[28] Dadras, S.; Momeni, H. R.; Qi, G.; Wang, Z.-l., Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form, Nonlinear Dynamics, 67, 2, 1161-1173 (2012) · Zbl 1245.34054 · doi:10.1007/s11071-011-0060-0
[29] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A., Determining Lyapunov exponents from a time series, Physica D. Nonlinear Phenomena, 16, 3, 285-317 (1985) · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9
[30] Wei, H. C.; Zheng, X. C., The Matrix Theory in Engineering (1999), Dongying, China: China University of Petroleum Press, Dongying, China
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.