Xie, Shenglan; Tu, Huonian; Zhu, Peng Supercloseness result of higher order FEM/LDG coupled method for solving singularly perturbed problem on S-type mesh. (English) Zbl 1470.65146 Abstr. Appl. Anal. 2014, Article ID 260840, 11 p. (2014). Summary: We present a first supercloseness analysis for higher order FEM/LDG coupled method for solving singularly perturbed convection-diffusion problem. Based on piecewise polynomial approximations of degree \(k\) (\(k \geq 1\)), a supercloseness property of \(k + 1 / 2\) in DG norm is established on S-type mesh. Numerical experiments complement the theoretical results. Cited in 1 Document MSC: 65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations 34B16 Singular nonlinear boundary value problems for ordinary differential equations 65L11 Numerical solution of singularly perturbed problems involving ordinary differential equations PDF BibTeX XML Cite \textit{S. Xie} et al., Abstr. Appl. Anal. 2014, Article ID 260840, 11 p. (2014; Zbl 1470.65146) Full Text: DOI References: [1] Zhang, Z., Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems, Mathematics of Computation, 72, 243, 1147-1177 (2003) · Zbl 1019.65091 [2] Shishkin, G. I., Grid approximation of singularly perturbed elliptic and parabolic equations [Ph.D. thesis], Moscow, Russia: Keldysh Institue, Moscow, Russia · Zbl 0951.65084 [3] Linß, T., An upwind difference scheme on a novel Shishkin-type mesh for a linear convection-diffusion problem, Journal of Computational and Applied Mathematics, 110, 1, 93-104 (1999) · Zbl 0939.65116 [4] Linss, T., Analysis of a Galerkin finite element method on a Bakhvalov-Shishkin mesh for a linear convection-diffusion problem, IMA Journal of Numerical Analysis, 20, 4, 621-632 (2000) · Zbl 0966.65083 [5] Stynes, M.; O’Riordan, E., A uniformly convergent Galerkin method on a Shishkin mesh for a convection-diffusion problem, Journal of Mathematical Analysis and Applications, 214, 1, 36-54 (1997) · Zbl 0917.65088 [6] Roos, H. G.; Linß, T., Sufficient conditions for uniform convergence on layer-adapted grids, Computing, 63, 1, 27-45 (1999) · Zbl 0931.65085 [7] Roos, H. G.; Zarin, H., A supercloseness result for the discontinuous Galerkin stabilization of convection-diffusion problems on Shishkin meshes, Numerical Methods for Partial Differential Equations, 23, 6, 1560-1576 (2007) · Zbl 1145.65100 [8] Xie, Z.; Zhang, Z., Superconvergence of DG method for one-dimensional singularly perturbed problems, Journal of Computational Mathematics, 25, 2, 185-200 (2007) · Zbl 1142.65388 [9] Xie, Z.; Zhang, Z.; Zhang, Z., A numerical study of uniform superconvergence of LDG method for solving singularly perturbed problems, Journal of Computational Mathematics, 27, 2-3, 280-298 (2009) · Zbl 1212.65422 [10] Xie, Z.; Zhang, Z., Uniform superconvergence analysis of the discontinuous Galerkin method for a singularly perturbed problem in 1-D, Mathematics of Computation, 79, 269, 35-45 (2010) · Zbl 1208.65118 [11] Zarin, H.; Roos, H. G., Interior penalty discontinuous approximations of convection-diffusion problems with parabolic layers, Numerische Mathematik, 100, 4, 735-759 (2005) · Zbl 1100.65105 [12] Zarin, H., Continuous-discontinuous finite element method for convection-diffusion problems with characteristic layers, Journal of Computational and Applied Mathematics, 231, 2, 626-636 (2009) · Zbl 1193.65204 [13] Zhu, H.; Tian, H.; Zhang, Z., Convergence analysis of the LDG method for singularly perturbed two-point boundary value problems, Communications in Mathematical Sciences, 9, 4, 1013-1032 (2011) · Zbl 1281.65106 [14] Zhu, H.; Zhang, Z., Convergence analysis of the LDG method applied to singularly perturbed problems, Numerical Methods for Partial Differential Equations, 29, 2, 396-421 (2013) · Zbl 1267.65157 [15] Zhu, H.; Zhang, Z., Uniform convergence of the LDG method for a singularly perturbed problem with the exponential boundary layer, Mathematics of Computation, 83, 286, 635-663 (2014) · Zbl 1282.65159 [16] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM Journal on Numerical Analysis, 39, 5, 1749-1779 (2001/02) · Zbl 1008.65080 [17] Zhu, P.; Xie, Z.; Zhou, S., A uniformly convergent continuous-discontinuous Galerkin method for singularly perturbed problems of convection-diffusion type, Applied Mathematics and Computation, 217, 9, 4781-4790 (2011) · Zbl 1207.65106 [18] Xie, Z. Q.; Zhu, P.; Zhou, S. Z., Uniform convergence of a coupled method for convection-diffusion problems in 2-D Shishkin mesh, International Journal of Numerical Analysis and Modeling, 10, 4, 845-859 (2013) · Zbl 1282.65134 [19] Zhu, P.; Xie, S., Higher order uniformly convergent continuous/discontinuous Galerkin methods for singularly perturbed problems of convection-diffusion type, Applied Numerical Mathematics, 76, 48-59 (2014) · Zbl 1288.65156 [20] Franz, S., Convergence phenomena of \(Q_p\)-elements for convection-diffusion problems, Numerical Methods for Partial Differential Equations, 29, 1, 280-296 (2013) · Zbl 1255.65211 [21] Franz, S.; Matthies, G., Local projection stabilisation on S-type meshes for convection-diffusion problems with characteristic layers, Computing. Archives for Scientific Computing, 87, 3-4, 135-167 (2010) · Zbl 1203.65226 [22] Zhu, P.; Xie, Z.; Zhou, S., A coupled continuous-discontinuous FEM approach for convection diffusion equations, Acta Mathematica Scientia B, 31, 2, 601-612 (2011) · Zbl 1240.65340 [23] Castillo, P.; Cockburn, B.; Perugia, I.; Schötzau, D., An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM Journal on Numerical Analysis, 38, 5, 1676-1706 (2000) · Zbl 0987.65111 [24] Cockburn, B.; Shu, C. W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM Journal on Numerical Analysis, 35, 6, 2440-2463 (1998) · Zbl 0927.65118 [25] Perugia, I.; Schötzau, D., On the coupling of local discontinuous Galerkin and conforming finite element methods, Journal of Scientific Computing, 16, 4, 411-433 (2001) · Zbl 0995.65117 [26] Tobiska, L., Analysis of a new stabilized higher order finite element method for advection-diffusion equations, Computer Methods in Applied Mechanics and Engineering, 196, 1-3, 538-550 (2006) · Zbl 1120.76336 [27] Roos, H.-G.; Stynes, M.; Tobiska, L., Robust Numerical Methods for Singularly Perturbed Differential Equations. Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer Series in Computational Mathematics, 24 (2008), Berlin, Germany: Springer, Berlin, Germany · Zbl 1155.65087 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.