Ulam-Hyers stability and well-posedness of fixed point problems for \(\alpha\)-\(\lambda\)-contraction mapping in metric spaces. (English) Zbl 1429.54054

Summary: We study Ulam-Hyers stability and the well-posedness of the fixed point problem for new type of generalized contraction mapping, so called \(\alpha\)-\(\lambda\)-contraction mapping. The results in this paper generalize and unify several results in the literature such as the Banach contraction principle.


54H25 Fixed-point and coincidence theorems (topological aspects)
54E40 Special maps on metric spaces
Full Text: DOI


[1] Ulam, S. M., A Collection of Mathematical Problems (1960), New York, NY, USA: Interscience, New York, NY, USA · Zbl 0086.24101
[2] Hyers, D. H., On the stability of the linear functional equation, Proceedings of the National Academy of Sciences of the United States of America, 27, 4, 222-224 (1941) · Zbl 0061.26403
[3] Bota, M.-F.; Karapınar, E.; Mleşniţe, O., Ulam-Hyers stability results for fixed point problems via \(\alpha - \psi \)-contractive mapping in \((b)\)-metric space, Abstract and Applied Analysis, 2013 (2013) · Zbl 1434.54013
[4] Bota-Boriceanu, M. F.; Petruşel, A., Ulam-Hyers stability for operatorial equations, Analele Stiintifice ale Universitatii Al I Cuza din Iasi: Matematica, 57, 1, 65-74 (2011) · Zbl 1265.54158
[5] Lazǎr, V. L., Ulam-Hyers stability for partial differential inclusions, Electronic Journal of Qualitative Theory of Differential Equations, 21, 1-19 (2012) · Zbl 1340.54065
[6] Rus, I. A., The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory, 9, 2, 541-559 (2008) · Zbl 1172.54030
[7] Rus, I. A., Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 10, 2, 305-320 (2009) · Zbl 1204.47071
[8] Tişe, F. A.; Tişe, I. C., Ulam-Hyers-Rassias stability for set integral equations, Fixed Point Theory, 13, 2, 659-668 (2012) · Zbl 1282.45004
[9] Brzdȩk, J.; Chudziak, J.; Páles, Z., A fixed point approach to stability of functional equations, Nonlinear Analysis: Theory, Methods and Applications, 74, 17, 6728-6732 (2011) · Zbl 1236.39022
[10] Brzdek, J.; Ciepliski, K., A fixed point approach to the stability of functional equations in non-Archimedean metric spaces, Nonlinear Analysis: Theory, Methods and Applications, 74, 18, 6861-6867 (2011) · Zbl 1237.39022
[11] Brzdȩk, J.; Ciepliński, K., A fixed point theorem and the Hyers-Ulam stability in non-Archimedean spaces, Journal of Mathematical Analysis and Applications, 400, 1, 68-75 (2013) · Zbl 1286.47049
[12] Cadariu, L.; Gavruta, L.; Gavruta, P., Fixed points and generalized Hyers-Ulam stability, Abstract Applied Analysis, 2012 (2012) · Zbl 1252.39030
[13] de Blasi, F. S.; Myjak, J., Sur la porosité de l’ensemble des contractions sans point fixe, Comptes Rendus des Séances de l’Académie des Sciences I: Mathématique, 308, 2, 51-54 (1989) · Zbl 0657.47053
[14] Reich, S.; Zaslavski, A. J., Well-posedness of fixed point problems, Far East Journal of Mathematical Sciences (FJMS), 393-401 (2001) · Zbl 1014.47033
[15] Lahiri, B. K.; Das, P., Well-posedness and porosity of a certain class of operators, Demonstratio Mathematica, 38, 1, 169-176 (2005) · Zbl 1159.47305
[16] Popa, V., Well-posedness of fixed point problem in orbitally complete metric spaces, Studii şi Cercetări Ştiinţifice. Seria Matematică, 16, 209-214 (2006) · Zbl 1174.54384
[17] Popa, V., Well posedness of fixed point problem in compact metric spaces, Bulletin Universităţii Petrol-Gaze din Ploieşti. Seria Matematică—Informatică—Fizică, 60, 1, 14 (2008)
[18] Samet, B.; Vetro, C.; Vetro, P., Fixed point theorems for \(\alpha-\psi \)-contractive type mappings, Nonlinear Analysis: Theory, Methods & Applications, 75, 4, 2154-2165 (2012) · Zbl 1242.54027
[19] Agarwal, R. P.; Sintunavarat, W.; Kumam, P., PPF dependent fixed point theorems for an c-admissible non-self mapping in the Razumikhin class, Fixed Point Theory and Applications, 2013, article 280 (2013) · Zbl 1342.47069
[20] Alghamdi, M. A.; Karapinar, E., G-beta-psi contractive type mappings and related fixed point theorems, Journal of Inequalities and Applications, 2013, article 70 (2013) · Zbl 1452.54023
[21] Hussain, N.; Karapınar, E.; Salimi, P.; Vetro, P., Fixed point results for \(G^m\)-Meir-Keeler contractive and \(G-(\alpha, \psi)\)-Meir-Keeler contractive mappings, Fixed Point Theory and Applications, 2013, article 34 (2013) · Zbl 1293.54024
[22] Karapnar, E.; Samet, B., Generalized \((α-ψ)\) contractive type mappings and related fixed point theorems with applications, Abstract and Applied Analysis, 2012 (2012) · Zbl 1252.54037
[23] Karapinar, E.; Sintunavarat, W., The existence of an optimal approximate solution theorems for generalized \(α\)-proximal contraction non-self mappings and applications, Fixed Point Theory and Applications, 2013, article 323 (2013) · Zbl 1469.54133
[24] Kutbi, M. A.; Sintunavarat, W., The existence of fixed point theorems via \(w\)-distance and \(\alpha \)-admissible mappings and applications, Abstract and Applied Analysis, 2013 (2013) · Zbl 1300.54075
[25] Sintunavarat, W.; Plubtieng, S.; Katchang, P., Fixed point result and applications on b-metric space endowed with an arbitrary binary relation, Fixed Point Theory and Applications, 2013, article 296 (2013) · Zbl 1469.54192
[26] Ali, M. U.; Kamran, T.; Sintunavarat, W.; Katchang, P., Mizoguchi-Takahashi’s fixed point theorem with \(\alpha, \eta\) functions, Abstract and Applied Analysis, 2013 (2013) · Zbl 1293.54016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.