×

Exact solutions and conservation laws of the Drinfel’d-Sokolov-Wilson system. (English) Zbl 1472.35306

Summary: We study the Drinfel’d-Sokolov-Wilson system, which was introduced as a model of water waves. Firstly we obtain exact solutions of this system using the \((G' / G)\)-expansion method. In addition to exact solutions we also construct conservation laws for the underlying system using Noether’s approach.

MSC:

35Q35 PDEs in connection with fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76B25 Solitary waves for incompressible inviscid fluids
35A30 Geometric theory, characteristics, transformations in context of PDEs

References:

[1] Wen, Z.; Liu, Z.; Song, M., New exact solutions for the classical Drinfel’d-Sokolov-Wilson equation, Applied Mathematics and Computation, 215, 6, 2349-2358 (2009) · Zbl 1181.35221 · doi:10.1016/j.amc.2009.08.025
[2] Yao, R.-x.; Li, Z.-b., New exact solutions for three nonlinear evolution equations, Physics Letters A, 297, 3-4, 196-204 (2002) · Zbl 0995.35003 · doi:10.1016/S0375-9601(02)00294-3
[3] Liu, C.; Liu, X., Exact solutions of the classical Drinfel’d-Sokolov-Wilson equations and the relations among the solutions, Physics Letters A, 303, 2-3, 197-203 (2002) · Zbl 0999.35016 · doi:10.1016/S0375-9601(02)01233-1
[4] Hirota, R.; Grammaticos, B.; Ramani, A., Soliton structure of the Drinfel’d-Sokolov-Wilson equation, Journal of Mathematical Physics, 27, 6, 1499-1505 (1986) · Zbl 0638.35071 · doi:10.1063/1.527110
[5] Fan, E., An algebraic method for finding a series of exact solutions to integrable and nonintegrable nonlinear evolution equations, Journal of Physics A: Mathematical and General, 36, 25, 7009-7026 (2003) · Zbl 1167.35324 · doi:10.1088/0305-4470/36/25/308
[6] Yao, Y., Abundant families of new traveling wave solutions for the coupled Drinfel’d-Sokolov-Wilson equation, Chaos, Solitons & Fractals, 24, 1, 301-307 (2005) · Zbl 1062.35018 · doi:10.1016/j.chaos.2004.09.024
[7] Inc, M., On numerical doubly periodic wave solutions of the coupled Drinfel’d-Sokolov-Wilson equation by the decomposition method, Applied Mathematics and Computation, 172, 1, 421-430 (2006) · Zbl 1088.65090 · doi:10.1016/j.amc.2005.02.012
[8] Zhao, X.-Q.; Zhi, H.-Y., An improved \(F\)-expansion method and its application to coupled Drinfel’d-Sokolov-Wilson equation, Communications in Theoretical Physics, 50, 2, 309-314 (2008) · Zbl 1392.35056 · doi:10.1088/0253-6102/50/2/05
[9] He, J.-H.; Wu, X.-H., Exp-function method for nonlinear wave equations, Chaos, Solitons & Fractals, 30, 3, 700-708 (2006) · Zbl 1141.35448 · doi:10.1016/j.chaos.2006.03.020
[10] Yan, Z. Y.; Zhang, H. Q., On a new algorithm of constructing solitary wave solutions for systems of nonlinear evolution equations in mathematical physics, Applied Mathematics and Mechanics, 21, 4, 383-388 (2000) · Zbl 0962.35159 · doi:10.1007/BF02463758
[11] Wang, M. L., Solitary wave solutions for variant Boussinesq equations, Physics Letters A, 199, 3-4, 169-172 (1995) · Zbl 1020.35528 · doi:10.1016/0375-9601(95)00092-H
[12] Wazwaz, A. M., Compactons and solitary patterns structures for variants of the KdV and the KP equations, Applied Mathematics and Computation, 139, 1, 37-54 (2003) · Zbl 1029.35200 · doi:10.1016/S0096-3003(02)00120-0
[13] Fan, E., Extended tanh-function method and its applications to nonlinear equations, Physics Letters A, 277, 4-5, 212-218 (2000) · Zbl 1167.35331 · doi:10.1016/S0375-9601(00)00725-8
[14] Wazwaz, A. M., The tanh method for compact and noncompact solutions for variants of the KdV-Burger and the \(K(n, n)\)-Burger equations, Physica D, 213, 2, 147-151 (2006) · Zbl 1091.35535 · doi:10.1016/j.physd.2005.09.018
[15] Wang, M.; Li, X.; Zhang, J., The \((G' / G)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Physics Letters A, 372, 4, 417-423 (2008) · Zbl 1217.76023 · doi:10.1016/j.physleta.2007.07.051
[16] Lax, P. D., Integrals of nonlinear equations of evolution and solitary waves, Communications on Pure and Applied Mathematics, 21, 467-490 (1968) · Zbl 0162.41103 · doi:10.1002/cpa.3160210503
[17] Benjamin, T. B., The stability of solitary waves, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 328, 153-183 (1972) · doi:10.1098/rspa.1972.0074
[18] Knops, R. J.; Stuart, C. A., Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity, Archive for Rational Mechanics and Analysis, 86, 3, 233-249 (1984) · Zbl 0589.73017 · doi:10.1007/BF00281557
[19] LeVeque, R. J., Numerical Methods for Conservation Laws (1992), Basel, Switzerland: Birkhäuser, Basel, Switzerland · Zbl 0847.65053 · doi:10.1007/978-3-0348-8629-1
[20] Godlewski, E.; Raviart, P.-A., Numerical Approximation of Hyperbolic Systems of Conservation Laws (1996), Berlin, Germany: Springer, Berlin, Germany · Zbl 1063.65080
[21] Sjöberg, A., Double reduction of PDEs from the association of symmetries with conservation laws with applications, Applied Mathematics and Computation, 184, 2, 608-616 (2007) · Zbl 1116.35004 · doi:10.1016/j.amc.2006.06.059
[22] Bokhari, A. H.; Al-Dweik, A. Y.; Kara, A. H.; Mahomed, F. M.; Zaman, F. D., Double reduction of a nonlinear \((2 + 1)\) wave equation via conservation laws, Communications in Nonlinear Science and Numerical Simulation, 16, 3, 1244-1253 (2011) · Zbl 1221.35244 · doi:10.1016/j.cnsns.2010.07.007
[23] Caraffini, G. L.; Galvani, M., Symmetries and exact solutions via conservation laws for some partial differential equations of mathematical physics, Applied Mathematics and Computation, 219, 4, 1474-1484 (2012) · Zbl 1293.35277 · doi:10.1016/j.amc.2012.07.050
[24] Noether, E., Invariante variationsprobleme, Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu G öttingen, Mathematisch-Physikalische Klasse, Heft, 2, 235-257 (1918) · JFM 46.0770.01
[25] Laplace, P. S., Traite de Mecanique Celeste, 1 (1978), Paris, France
[26] Steudel, H., Über die Zuordnung zwischen Invarianzeigenschaften und Erhaltungssätzen, Zeitschrift für Naturforschung, 17a, 129-132 (1962)
[27] Olver, P. J., Applications of Lie Groups to Differential Equations (1993), New York, NY, USA: Springer, New York, NY, USA · Zbl 0785.58003 · doi:10.1007/978-1-4612-4350-2
[28] Anco, S. C.; Bluman, G., Direct construction method for conservation laws of partial differential equations. I. Examples of conservation law classifications, European Journal of Applied Mathematics, 13, 5, 545-566 (2002) · Zbl 1034.35071 · doi:10.1017/S0956792501004661
[29] Kara, A. H.; Mahomed, F. M., Relationship between symmetries and conservation laws, International Journal of Theoretical Physics, 39, 1, 23-40 (2000) · Zbl 0962.35009 · doi:10.1023/A:1003686831523
[30] Kara, A. H.; Mahomed, F. M., Noether-type symmetries and conservation laws via partial Lagrangians, Nonlinear Dynamics, 45, 3-4, 367-383 (2006) · Zbl 1121.70014 · doi:10.1007/s11071-005-9013-9
[31] Naz, R.; Mahomed, F. M.; Hayat, T., Conservation laws for third-order variant Boussinesq system, Applied Mathematics Letters, 23, 8, 883-886 (2010) · Zbl 1193.35104 · doi:10.1016/j.aml.2010.04.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.