×

Exact determinants of some special circulant matrices involving four kinds of famous numbers. (English) Zbl 1472.15006

Summary: Circulant matrix family is used for modeling many problems arising in solving various differential equations. The RSFPLR circulant matrices and RSLPFL circulant matrices are two special circulant matrices. The techniques used herein are based on the inverse factorization of polynomial. The exact determinants of these matrices involving Perrin, Padovan, Tribonacci, and the generalized Lucas number are given, respectively.

MSC:

15A15 Determinants, permanents, traces, other special matrix functions
15B05 Toeplitz, Cauchy, and related matrices
11C20 Matrices, determinants in number theory
11B39 Fibonacci and Lucas numbers and polynomials and generalizations

References:

[1] Lei, S. L.; Sun, H. W., A circulant preconditioner for fractional diffusion equations, Journal of Computational Physics, 242, 715-725 (2013) · Zbl 1297.65095 · doi:10.1016/j.jcp.2013.02.025
[2] Pang, H. K.; Zhang, Y. Y.; Vong, S. W.; Jin, X. Q., Circulant preconditioners for pricing options, Linear Algebra and Its Applications, 434, 11, 2325-2342 (2011) · Zbl 1233.91317 · doi:10.1016/j.laa.2010.03.034
[3] Zhang, C.; Chen, H.; Wang, L., Strang-type preconditioners applied to ordinary and neutral differential-algebraic equations, Numerical Linear Algebra with Applications, 18, 5, 843-855 (2011) · Zbl 1249.65165 · doi:10.1002/nla.770
[4] Delgado, J.; Romero, N.; Rovella, A.; Vilamajó, F., Bounded solutions of quadratic circulant difference equations, Journal of Difference Equations and Applications, 11, 10, 897-907 (2005) · Zbl 1097.37011 · doi:10.1080/10236190500138312
[5] Jin, X. Q.; Lei, S. L.; Wei, Y. M., Circulant preconditioners for solving differential equations with multidelays, Computers & Mathematics with Applications, 47, 8-9, 1429-1436 (2004) · Zbl 1072.34085 · doi:10.1016/S0898-1221(04)90135-6
[6] Bai, Z. J.; Jin, X. Q.; Song, L. L., Strang-type preconditioners for solving linear systems from neutral delay differential equations, Calcolo, 40, 1, 21-31 (2003) · Zbl 1168.65369 · doi:10.1007/s100920300001
[7] Chan, R. H.; Jin, X. Q.; Tam, Y. H., Strang-type preconditioners for solving systems of ODEs by boundary value methods, Electronic Journal of Mathematical and Physical Sciences, 1, 1, 14-46 (2002) · Zbl 1002.65075
[8] Nussbaum, R. D., Circulant matrices and differential-delay equations, Journal of Differential Equations, 60, 2, 201-217 (1985) · Zbl 0622.34076 · doi:10.1016/0022-0396(85)90113-5
[9] Otto, K., Analysis of preconditioners for hyperbolic partial differential equations, SIAM Journal on Numerical Analysis, 33, 6, 2131-2165 (1996) · Zbl 0861.65072 · doi:10.1137/S0036142994264894
[10] Gilmour, A. E., Circulant matrix methods for the numerical solution of partial differential equations by FFT convolutions, Applied Mathematical Modelling, 12, 1, 44-50 (1988) · Zbl 0645.65065 · doi:10.1016/0307-904X(88)90022-4
[11] Brockett, R. W.; Willems, J. L., Discretized partial differential equations: examples of control systems defined on modules, Automatica, 10, 507-515 (1974) · Zbl 0288.93017
[12] Davis, P., Circulant Matrices (1979), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0418.15017
[13] Jiang, Z. L.; Zhou, Z. X., Circulant Matrices (1999), Chengdu, China: Chengdu Technology University Publishing Company, Chengdu, China
[14] Chillag, D., Regular representations of semisimple algebras, separable field extensions, group characters, generalized circulants, and generalized cyclic codes, Linear Algebra and Its Applications, 218, 147-183 (1995) · Zbl 0839.20015 · doi:10.1016/0024-3795(93)00167-X
[15] Jiang, Z. L.; Xu, Z. B., Efficient algorithm for finding the inverse and the group inverse of FLS \(r\)-circulant matrix, Journal of Applied Mathematics & Computing, 18, 1-2, 45-57 (2005) · Zbl 1087.65024 · doi:10.1007/BF02936555
[16] Jiang, Z. L.; Sun, D. H., Fast algorithms for solving the inverse problem of \(A x = b\), Proceedings of the 8th International Conference on Matrix Theory and Its Applications in China
[17] Jiang, Z. L., Fast algorithms for solving FLS \(r\)-circulant linear systems, Proceedings of the Spring World Congress on Engineering and Technology (SCET ’12)
[18] Jiang, Z. L.; Jiang, Z. W., On the norms of RFPLR circulant matrices with the Fibonacci and Lucas numbers, Proceedings of the Spring World Congress on Engineering and Technology (SCET ’12)
[19] Li, J.; Jiang, Z.; Shen, N., Explicit determinants of the Fibonacci RFPLR circulant and Lucas RFPLR circulant matrix, JP Journal of Algebra, Number Theory and Applications, 28, 2, 167-179 (2013) · Zbl 1272.15005
[20] Jiang, Z. L.; Li, J.; Shen, N., On the explicit determinants of the RFPLR and RFPLL circulant matrices involving Pell numbers in information theory, Information Computing and Applications. Information Computing and Applications, Communications in Computer and Information Science, 308, 364-370 (2012), Berlin, Germany: Springer, Berlin, Germany · doi:10.1007/978-3-642-34041-3_52
[21] Tian, Z. P., Fast algorithm for solving the first-plus last-circulant linear system, Journal of Shandong University: Natural Science, 46, 12, 96-103 (2011)
[22] Shen, N.; Jiang, Z. L.; Li, J., On explicit determinants of the RFMLR and RLMFL circulant matrices involving certain famous numbers, WSEAS Transactions on Mathematics, 12, 1, 42-53 (2013)
[23] Jiang, Z. L.; Shen, N.; Li, J., On the explicit determinants of the RFMLR and RLMFL circulant matrices involving Jacobsthal numbers in communication, Proceedings of the 4th International Conference on Information Computing and Applications (ICICA ’13)
[24] Tian, Z. P., Fast algorithms for solving the inverse problem of \(A X = b\) in four different families of patterned matrices, Far East Journal of Applied Mathematics, 52, 1, 1-12 (2011) · Zbl 1220.65054
[25] Jaiswal, D. V., On determinants involving generalized Fibonacci numbers, The Fibonacci Quarterly, 7, 319-330 (1969) · Zbl 0191.04501
[26] Lin, D., Fibonacci-Lucas quasi-cyclic matrices, The Fibonacci Quarterly, 40, 3, 280-286 (2002) · Zbl 1081.11011
[27] Lind, D. A., A Fibonacci circulant, The Fibonacci Quarterly, 8, 5, 449-455 (1970) · Zbl 0215.06802
[28] Shen, S. Q.; Cen, J. M.; Hao, Y., On the determinants and inverses of circulant matrices with Fibonacci and Lucas numbers, Applied Mathematics and Computation, 217, 23, 9790-9797 (2011) · Zbl 1222.15010 · doi:10.1016/j.amc.2011.04.072
[29] Akbulak, M.; Bozkurt, D., On the norms of Toeplitz matrices involving Fibonacci and Lucas numbers, Hacettepe Journal of Mathematics and Statistics, 37, 2, 89-95 (2008) · Zbl 1204.15031
[30] Lee, G. Y.; Kim, J. S.; Lee, S. G., Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, The Fibonacci Quarterly, 40, 3, 203-211 (2002) · Zbl 1079.11012
[31] Miladinović, M.; Stanimirović, P., Singular case of generalized Fibonacci and Lucas matrices, Journal of the Korean Mathematical Society, 48, 1, 33-48 (2011) · Zbl 1226.05017 · doi:10.4134/JKMS.2011.48.1.033
[32] Stanimirović, P.; Nikolov, J.; Stanimirović, I., A generalization of Fibonacci and Lucas matrices, Discrete Applied Mathematics, 156, 14, 2606-2619 (2008) · Zbl 1188.15024 · doi:10.1016/j.dam.2007.09.028
[33] Zhang, Z.; Zhang, Y., The Lucas matrix and some combinatorial identities, Indian Journal of Pure and Applied Mathematics, 38, 5, 457-465 (2007) · Zbl 1149.15014
[34] Yilmaz, F.; Bozkurt, D., Hessenberg matrices and the Pell and Perrin numbers, Journal of Number Theory, 131, 8, 1390-1396 (2011) · Zbl 1272.11034 · doi:10.1016/j.jnt.2011.02.002
[35] Blümlein, J.; Broadhurst, D. J.; Vermaseren, J. A. M., The multiple zeta value data mine, Computer Physics Communications, 181, 3, 582-625 (2010) · Zbl 1221.11183 · doi:10.1016/j.cpc.2009.11.007
[36] Janjić, M., Determinants and recurrence sequences, Journal of Integer Sequences, 15, 3, 1-21 (2012) · Zbl 1286.11017
[37] Elia, M., Derived sequences, the Tribonacci recurrence and cubic forms, The Fibonacci Quarterly, 39, 2, 107-115 (2001) · Zbl 1001.11008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.