×

High order Fefferman-Phong type inequalities in Carnot groups and regularity for degenerate elliptic operators plus a potential. (English) Zbl 1470.35377

Summary: Let \(\{X_1, X_2, \dots, X_m \}\) be the basis of space of horizontal vector fields in a Carnot group \(\mathbb{G} = (\mathbb{R}^n; \circ)\) \( (m < n)\). We prove high order Fefferman-Phong type inequalities in \(\mathbb{G}\). As applications, we derive a priori \(L^p(\mathbb{G})\) estimates for the nondivergence degenerate elliptic operators \(L = - \sum_{i, j = 1}^m a_{i j}(x) X_i X_j + V(x)\) with \(V M O\) coefficients and a potential \(V\) belonging to an appropriate Stummel type class introduced in this paper. Some of our results are also new even for the usual Euclidean space.

MSC:

35R03 PDEs on Heisenberg groups, Lie groups, Carnot groups, etc.
35B65 Smoothness and regularity of solutions to PDEs
35J70 Degenerate elliptic equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bramanti, M.; Brandolini, L.; Harboure, E.; Viviani, B., Global \(W^{2, p}\) estimates for nondivergence elliptic operators with potentials satisfying a reverse Hölder condition, Annali di Matematica Pura ed Applicata, 191, 2, 339-362 (2012) · Zbl 1251.47044
[2] Shen, Z. W., \(L^p\) estimates for Schrödinger operators with certain potentials, Annales de L’Institut Fourier, 45, 2, 513-546 (1995) · Zbl 0818.35021
[3] Thangavelu, S., Riesz transforms and the wave equation for the Hermite operator, Communications in Partial Differential Equations, 15, 8, 1199-1215 (1990) · Zbl 0709.35068
[4] Vitanza, C., A new contribution to the \(W^{2, p}\)-regularity for a class of elliptic second order equations with discontinuous coefficients, Le Matematiche, 47, 1, 177-186 (1992) · Zbl 0803.35031
[5] Zhong, J., Harmonic analysis for some Schrödinger type operators [Ph.D. thesis] (1993), Princeton, NJ, USA: Princeton University, Princeton, NJ, USA
[6] Di Fazio, G.; Zamboni, P., A Fefferman-Poincaré type inequality for Carnot-Carathéodory vector fields, Proceedings of the American Mathematical Society, 130, 9, 2655-2660 (2002) · Zbl 1031.46038
[7] Ragusa, M. A.; Zamboni, P., A potential theoretic inequality, Czechoslovak Mathematical Journal, 51(126), 1, 55-65 (2001) · Zbl 1079.35507
[8] Citti, G.; Garofalo, N.; Lanconelli, E., Harnack’s inequality for sum of squares of vector fields plus a potential, The American Journal of Mathematics, 115, 3, 699-734 (1993) · Zbl 0795.35018
[9] Li, H.-Q., Estimations \(L^p\) des opérateurs de Schrödinger sur les groupes nilpotents, Journal of Functional Analysis, 161, 1, 152-218 (1999) · Zbl 0929.22005
[10] Lu, G., A Fefferman-Phong type inequality for degenerate vector fields and applications, Panamerican Mathematical Journal, 6, 4, 37-57 (1996) · Zbl 0878.35050
[11] Lu, G., On Harnack’s inequality for a class of strongly degenerate Schrödinger operators formed by vector fields, Differential and Integral Equations, 7, 1, 73-100 (1994) · Zbl 0827.35032
[12] Bramanti, M.; Brandolini, L., \(L^p\) estimates for uniformly hypoelliptic operators with discontinuous coefficients on homogeneous groups, Università e Politecnico di Torino. Seminario Matematico. Rendiconti, 58, 4, 389-433 (2003) (2000) · Zbl 1072.35058
[13] Feng, X.; Niu, P., Global Orlicz regularity for sub-Laplace equations on homogeneous groups, Bulletin des Sciences Mathematiques, 136, 6, 648-665 (2012) · Zbl 1253.35194
[14] Feng, X.; Niu, P., Interior regularity for degenerate elliptic equations with drift on homogeneous groups, Journal of Lie Theory, 23, 3, 803-825 (2013) · Zbl 1279.22029
[15] Fefferman, C. L., The uncertainty principle, Bulletin of the American Mathematical Society, 9, 2, 129-206 (1983) · Zbl 0526.35080
[16] Chiarenza, F.; Frasca, M., A remark on a paper by C. Fefferman, Proceedings of the American Mathematical Society, 108, 2, 407-409 (1990) · Zbl 0694.46029
[17] Danielli, D., A Fefferman-Phong type inequality and applications to quasilinear subelliptic equations, Potential Analysis, 11, 4, 387-413 (1999) · Zbl 0940.35057
[18] Danielli, D.; Garofalo, N.; Nhieu, D.-M., Trace inequalities for Carnot-Carathéodory spaces and applications, Annali della Scuola Normale Superiore di Pisa, 27, 2, 195-252 (1998) · Zbl 0938.46036
[19] Lu, G., Embedding theorems into Lipschitz and BMO spaces and applications to quasilinear subelliptic differential equations, Publicacions Matemàtiques, 40, 2, 301-329 (1996) · Zbl 0873.35006
[20] Bramanti, M.; Brandolini, L., \(L^P\) estimates for nonvariational hypoelliptic operators with VMO coefficients, Transactions of the American Mathematical Society, 352, 2, 781-822 (2000) · Zbl 0935.35037
[21] Calderón, A., Inequalities for the maximal function relative to a metric, Studia Mathematica, 57, 3, 297-306 (1976) · Zbl 0341.44007
[22] Bonfiglioli, A.; Lanconelli, E.; Uguzzoni, F., Stratified Lie Groups and Potential Theory for Their Sub-Laplacians. Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer Monographs in Mathematics (2007), Berlin , Germany: Springer, Berlin , Germany · Zbl 1128.43001
[23] Folland, G. B., Subelliptic estimates and function spaces on nilpotent Lie groups, Arkiv för Matematik, 13, 2, 161-207 (1975) · Zbl 0312.35026
[24] Folland, G. B.; Stein, E. M., Hardy Spaces on Homogeneous Groups (1980), Princeton, NJ, USA: Princeton University Press, Princeton, NJ, USA
[25] Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals (1993), Princeton, NJ, USA: Princeton University Press, Princeton, NJ, USA · Zbl 0821.42001
[26] Hörmander, L., Hypoelliptic second order differential equations, Acta Mathematica, 119, 147-171 (1967) · Zbl 0156.10701
[27] Cohn, W. S.; Lu, G.; Wang, P., Sub-elliptic global high order Poincaré inequalities in stratified Lie groups and applications, Journal of Functional Analysis, 249, 2, 393-424 (2007) · Zbl 1129.22007
[28] Nagel, A.; Stein, E. M.; Wainger, S., Balls and metrics defined by vector fields. I: basic properties, Acta Mathematica, 155, 1, 130-147 (1985) · Zbl 0578.32044
[29] Chow, W.-L., Über Systeme von liearren partiellen Differentialgleichungen erster Ordnung, Mathematische Annalen, 117, 98-105 (1939) · JFM 65.0398.01
[30] Lu, G.; Wheeden, R. L., High order representation formulas and embedding theorems on stratified groups and generalizations, Studia Mathematica, 142, 2, 101-133 (2000) · Zbl 0974.46039
[31] Lu, G.; Wheeden, R. L., Simultaneous representation and approximation formulas and high-order Sobolev embedding theorems on stratified groups, Constructive Approximation, 20, 4, 647-668 (2004) · Zbl 1070.46024
[32] Chen, W., An Introduction to Differentiable Manifold (2001), Beijing, China: Higher Education Press, Beijing, China
[33] Chiarenza, F.; Frasca, M.; Longo, P., Interior \(W^{2, p}\) estimates for nondivergence elliptic equations with discontinuous coefficients, Ricerche di Matematica, 40, 1, 149-168 (1991) · Zbl 0772.35017
[34] Chiarenza, F.; Frasca, M.; Longo, P., \(W^{2, p}\)-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Transactions of the American Mathematical Society, 336, 2, 841-853 (1993) · Zbl 0818.35023
[35] Kim, D.; Krylov, N. V., Elliptic differential equations with coefficients measurable with respect to one variable and VMO with respect to the others, SIAM Journal on Mathematical Analysis, 39, 2, 489-506 (2007) · Zbl 1138.35308
[36] Krylov, N. V., Second-order elliptic equations with variably partially VMOcoefficients, Journal of Functional Analysis, 257, 6, 1695-1712 (2009) · Zbl 1171.35352
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.