Fu, Zunwei; Lu, Shanzhen; Pan, Yibiao; Shi, Shaoguang Boundedness of one-sided oscillatory integral operators on weighted Lebesgue spaces. (English) Zbl 1472.42017 Abstr. Appl. Anal. 2014, Article ID 291397, 7 p. (2014). Summary: We consider one-sided weight classes of Muckenhoupt type, but larger than the classical Muckenhoupt classes, and study the boundedness of one-sided oscillatory integral operators on weighted Lebesgue spaces using interpolation of operators with change of measures. Cited in 3 Documents MSC: 42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.) 46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) Keywords:Muckenhoupt classes; interpolation of operators × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Stein, E. M., Harmonic Analysis (Real-variable methods, orthogonality, and oscillatory integrals). Harmonic Analysis (Real-variable methods, orthogonality, and oscillatory integrals), Princeton Mathematical Series, 43, xiv+695 (1993), Princeton, NJ, USA: Princeton University Press, Princeton, NJ, USA · Zbl 0821.42001 [2] Grafakos, L., Classical and Modern Fourier Analysis, xii+931 (2004), Upper Saddle River, NJ, USA: Pearson Education, Upper Saddle River, NJ, USA · Zbl 1148.42001 [3] Hu, Y.; Pan, Y., Boundedness of oscillatory singular integrals on Hardy spaces, Arkiv för Matematik, 30, 2, 311-320 (1992) · Zbl 0779.42007 · doi:10.1007/BF02384877 [4] Lu, S., Multilinear oscillatory integrals with Calderón-Zygmund kernel, Science in China A, 42, 10, 1039-1046 (1999) · Zbl 0954.42008 · doi:10.1007/BF02889505 [5] Lu, S.; Zhang, Y., Criterion on \(L^p\)-boundedness for a class of oscillatory singular integrals with rough kernels, Revista Matemática Iberoamericana, 8, 2, 201-219 (1992) · Zbl 0786.42007 [6] Pan, Y., Hardy spaces and oscillatory singular integrals, Revista Matemática Iberoamericana, 7, 1, 55-64 (1991) · Zbl 0728.42013 · doi:10.4171/RMI/105 [7] Phong, D. H.; Stein, E. M., Singular integrals related to the Radon transform and boundary value problems, Proceedings of the National Academy of Sciences of the United States of America, 80, 24, 7697-7701 (1983) · Zbl 0567.42010 · doi:10.1073/pnas.80.24.7697 [8] Ricci, F.; Stein, E. M., Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, Journal of Functional Analysis, 73, 1, 179-194 (1987) · Zbl 0622.42010 · doi:10.1016/0022-1236(87)90064-4 [9] Coifman, R. R.; Fefferman, C., Weighted norm inequalities for maximal functions and singular integrals, Studia Mathematica, 51, 241-250 (1974) · Zbl 0291.44007 [10] Lu, S.; Zhang, Y., Weighted norm inequality of a class of oscillatory singular operators, Chinese Science Bulletin, 37, 9-13 (1992) · Zbl 0801.42009 [11] Sawyer, E., Weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Transactions of the American Mathematical Society, 297, 1, 53-61 (1986) · Zbl 0627.42009 · doi:10.2307/2000455 [12] Martín-Reyes, F. J.; Ortega Salvador, P.; de la Torre, A., Weighted inequalities for one-sided maximal functions, Transactions of the American Mathematical Society, 319, 2, 517-534 (1990) · Zbl 0696.42013 · doi:10.2307/2001252 [13] Martín-Reyes, F. J.; Pick, L.; de la Torre, A., \(A_\infty^+\) condition, Canadian Journal of Mathematics, 45, 6, 1231-1244 (1993) · Zbl 0797.42012 · doi:10.4153/CJM-1993-069-9 [14] Martín-Reyes, F. J.; de la Torre, A., One-sided BMO spaces, Journal of the London Mathematical Society, 49, 3, 529-542 (1994) · Zbl 0801.42010 · doi:10.1112/jlms/49.3.529 [15] Aimar, H.; Forzani, L.; Martín-Reyes, F. J., On weighted inequalities for singular integrals, Proceedings of the American Mathematical Society, 125, 7, 2057-2064 (1997) · Zbl 0868.42007 · doi:10.1090/S0002-9939-97-03787-8 [16] Fu, Z.; Lu, S.; Sato, S.; Shi, S., On weighted weak type norm inequalities for one-sided oscillatory singular integrals, Studia Mathematica, 207, 2, 137-151 (2011) · Zbl 1257.42022 · doi:10.4064/sm207-2-3 [17] Martín-Reyes, F. J.; Ortega Salvador, P.; de la Torre, A., Weights for one-sided operators, Recent Development in Real and Harmonic Analysis. Recent Development in Real and Harmonic Analysis, Applied and Numerical Harmonic Analysis (2009), Boston, Mass, USA: Birkhäuser, Boston, Mass, USA [18] Riveros, M. S.; de la Torre, A., On the best ranges for \(A_p^+\) and \(R H_r^+\), Czechoslovak Mathematical Journal, 51, 2, 285-301 (2001) · Zbl 0980.42015 · doi:10.1023/A:1013742829834 [19] Martín-Reyes, F. J., New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Proceedings of the American Mathematical Society, 117, 3, 691-698 (1993) · Zbl 0771.42011 · doi:10.2307/2159130 [20] Stein, E. M.; Weiss, G., Interpolation of operators with change of measures, Transactions of the American Mathematical Society, 87, 159-172 (1958) · Zbl 0083.34301 · doi:10.1090/S0002-9947-1958-0092943-6 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.