## Implicit vector integral equations associated with discontinuous operators.(English)Zbl 1463.45026

Summary: Let $$I : = [0,1]$$. We consider the vector integral equation $$h(u(t)) = f \left(t, \int_I g(t, z), u(z), d z\right)$$ for a.e.$$t \in I$$, where $$f : I \times J \rightarrow \mathbb{R}, g : I \times I \rightarrow [0, + \infty [$$, and $$h : X \rightarrow \mathbb{R}$$ are given functions and $$X, J$$ are suitable subsets of $$\mathbb{R}^n$$. We prove an existence result for solutions $$u \in L^s(I, \mathbb{R}^n)$$, where the continuity of $$f$$ with respect to the second variable is not assumed. More precisely, $$f$$ is assumed to be a.e.equal (with respect to second variable) to a function $$f^* : I \times J \rightarrow \mathbb{R}$$ which is almost everywhere continuous, where the involved null-measure sets should have a suitable geometry. It is easily seen that such a function $$f$$ can be discontinuous at each point $$x \in J$$. Our result, based on a very recent selection theorem, extends a previous result, valid for scalar case $$n = 1$$.

### MSC:

 45G10 Other nonlinear integral equations
Full Text:

### References:

 [1] Anello, G.; Cubiotti, P., Non-autonomous implicit integral equations with discontinuous right-hand side, Commentationes Mathematicae Universitatis Carolinae, 45, 3, 417-429 (2004) · Zbl 1099.45004 [2] Banaś, J.; Knap, Z., Integrable solutions of a functional-integral equation, Revista Matemática de la Universidad Complutense de Madrid, 2, 1, 31-38 (1989) · Zbl 0679.45003 [3] Emmanuele, G., About the existence of integrable solutions of a functional-integral equation, Revista Matemática de la Universidad Complutense de Madrid, 4, 1, 65-69 (1991) · Zbl 0746.45004 [4] Emmanuele, G., Integrable solutions of a functional-integral equation, Journal of Integral Equations and Applications, 4, 1, 89-94 (1992) · Zbl 0755.45005 [5] Fečkan, M., Nonnegative solutions of nonlinear integral equations, Commentationes Mathematicae Universitatis Carolinae, 36, 4, 615-627 (1995) · Zbl 0840.45007 [6] Cammaroto, F.; Cubiotti, P., Implicit integral equations with discontinuous right-hand side, Commentationes Mathematicae Universitatis Carolinae, 38, 2, 241-246 (1997) · Zbl 0886.47031 [7] Cammaroto, F.; Cubiotti, P., Vector integral equations with discontinuous right-hand side, Commentationes Mathematicae Universitatis Carolinae, 40, 3, 483-490 (1999) · Zbl 1065.47505 [8] Cubiotti, P., Non-autonomous vector integral equations with discontinuous right-hand side, Commentationes Mathematicae Universitatis Carolinae, 42, 2, 319-329 (2001) · Zbl 1055.45004 [9] Cubiotti, P.; Yao, J. C., Two-point problem for vector differential inclusions with discontinuous right-hand side, Applicable Analysis (2013) · Zbl 1325.34025 [10] Klein, E.; Thompson, A. C., Theory of Correspondences (1984), New York, NY, USA: John Wiley & Sons, New York, NY, USA [11] Kucia, A., Scorza Dragoni type theorems, Polska Akademia Nauk. Fundamenta Mathematicae, 138, 3, 197-203 (1991) · Zbl 0744.28011 [12] Castaing, C.; Valadier, M., Convex Analysis and Measurable Multifunctions (1977), Berlin, Germany: Springer, Berlin, Germany · Zbl 0346.46038 [13] Ricceri, B., Sur la semi-continuité inférieure de certaines multifonctions, Comptes Rendus des Séances de l’Académie des Sciences. Série I. Mathématique, 294, 7, 265-267 (1982) · Zbl 0483.54010 [14] Himmelberg, C. J., Measurable relations, Polska Akademia Nauk. Fundamenta Mathematicae, 87, 53-72 (1975) · Zbl 0296.28003 [15] Ricceri, O. N.; Ricceri, B., An existence theorem for inclusions of the type $$\Psi(u)(t) \in F(t, \Phi(u)(t))$$ and application to a multivalued boundary value problem, Applicable Analysis, 38, 4, 259-270 (1990) · Zbl 0687.47044 [16] Kantorovich, L. V.; Akilov, G. P., Functional Analysis in Normed Spaces (1964), Oxford, UK: Pergamon Press, Oxford, UK · Zbl 0127.06104 [17] Scorza Dragoni, G., Un teorema sulle funzioni continue rispetto ad una e misurabili rispetto ad un’altra variabile, Rendiconti del Seminario Matematico della Università di Padova, 17, 102-106 (1948) · Zbl 0032.19702 [18] Lang, S., Real and Functional Analysis (1993), New York, NY, USA: Springer, New York, NY, USA · Zbl 0831.46001 [19] Villani, A., On Lusin’s condition for the inverse function, Rendiconti del Circolo Matematico di Palermo II, 33, 3, 331-335 (1984) · Zbl 0562.26002 [20] Hewitt, E.; Stromberg, K., Real and Abstract Analysis (1975), Berlin, Germany: Springer, Berlin, Germany
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.