×

A partial robust M-regression-based prediction and fault detection method. (English) Zbl 1449.62280

Summary: Due to its simplicity and easy implementation, partial least squares (PLS) serves as an efficient approach in large-scale industrial process. However, like many data-based methods, PLS is quite sensitive to outliers, which is a common abnormal characteristic of the measured process data that can significantly affect the monitoring performance of PLS. In order to develop a robust prediction and fault detection method, this paper employs the partial robust M-regression (PRM) to deal with the outliers. Moreover, to eliminate the useless variations for prediction, an orthogonal decomposition is performed on the measurable variables space so as to allow the new method to serve as a powerful tool for quality-related prediction and fault detection. The proposed method is finally applied on the Tennessee Eastman (TE) process.

MSC:

62P30 Applications of statistics in engineering and industry; control charts
62M20 Inference from stochastic processes and prediction
62G35 Nonparametric robustness
62G32 Statistics of extreme values; tail inference

References:

[1] Chiang, L. H.; Braatz, R. D.; Russell, E., Fault Detection and Diagnosis in Industrial Systems (2001), Springer · Zbl 0982.93005 · doi:10.1007/978-1-4471-0347-9
[2] Patton, R. J.; Frank, P. M., Issues of Fault Diagnosis for Dynamic Systems (2000), Springer · doi:10.1007/978-1-4471-3644-6
[3] Ding, S. X., Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools (2008), Springer
[4] Gao, Z.; Breikin, T.; Wang, H., Reliable observer-based control against sensor failures for systems with time delays in both state and input, IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 38, 5, 1018-1029 (2008) · doi:10.1109/TSMCA.2008.923050
[5] Du, D.; Jiang, B.; Shi, P., Sensor fault estimation and compensation for time-delay switched systems, International Journal of Systems Science. Principles and Applications of Systems and Integration, 43, 4, 629-640 (2012) · Zbl 1307.93394 · doi:10.1080/00207721.2010.517867
[6] Dong, H.; Wang, Z.; Gao, H., Fault detection for Markovian jump systems with sensor saturations and randomly varying nonlinearities, IEEE Transactions on Circuits and Systems. I. Regular Papers, 59, 10, 2354-2362 (2012) · Zbl 1468.94903 · doi:10.1109/TCSI.2012.2185330
[7] Du, D.; Jiang, B.; Shi, P.; Karimi, H. R., Fault detection for continuoustime switched systems under asynchronous switching, International Journal of Robust and Nonlinear Control (2013) · Zbl 1298.93313 · doi:10.1002/rnc.2961
[8] Zhang, H.; Zhang, X.; Wang, J., Robust gain-scheduling energy-topeak control of vehicle lateral dynamics stabilisation, Vehicle System Dynamics, 1-32 (2014)
[9] Yin, S.; Ding, S.; Haghani, A.; Hao, H.; Zhang, P., A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark tennessee eastman process, Journal of Process Control, 22, 9, 1567-1581 (2012) · doi:10.1016/j.jprocont.2012.06.009
[10] Ding, S. X.; Zhang, P.; Naik, A.; Ding, E. L.; Huang, B., Subspace method aided data-driven design of fault detection and isolation systems, Journal of Process Control, 19, 9, 1496-1510 (2009) · doi:10.1016/j.jprocont.2009.07.005
[11] Dong, J.; Verhaegen, M.; Gustafsson, F., Robust fault detection with statistical uncertainty in identified parameters, IEEE Transactions on Signal Processing, 60, 10, 5064-5076 (2012) · Zbl 1393.94975 · doi:10.1109/TSP.2012.2208638
[12] Yin, S.; Ding, S. X.; Sari, A. H. A.; Hao, H., Data-driven monitoring for stochastic systems and its application on batch process, International Journal of Systems Science. Principles and Applications of Systems and Integration, 44, 7, 1366-1376 (2013) · Zbl 1278.93259 · doi:10.1080/00207721.2012.659708
[13] Ding, S. X.; Zhang, P.; Yin, S.; Ding, E. L., An integrated design framework of fault-tolerant wireless networked control systems for industrial automatic control applications, IEEE Transactions on Industrial Informatics, 9, 1, 462-471 (2013) · doi:10.1109/TII.2012.2214390
[14] Geladi, P.; Kowalski, B. R., Partial least-squares regression: a tutorial, Analytica Chimica Acta, 185, 1-17 (1986) · doi:10.1016/0003-2670(86)80028-9
[15] De Jong, S., SIMPLS: an alternative approach to partial least squares regression, Chemometrics and Intelligent Laboratory Systems, 18, 3, 251-253 (1993) · doi:10.1016/0169-7439(93)85002-X
[16] Yin, S.; Ding, S. X.; Zhang, P.; Hagahni, A.; Naik, A., Study on modifications of pls approach for process monitoring, Threshold, 2, article 4 (2011)
[17] Yin, S.; Wang, G., A modified partial robust m-regression to improve prediction performance for data with outliers, Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE ’13)
[18] Yin, S.; Wei, Z.; Gao, H.; Peng, K., Data-driven quality related prediction and monitoring, Proceedings of the 38th Annual Conference on IEEE Industrial Electronics Society (IECON ’12)
[19] Wakelinc, I.; Macfie, H., A robust pls procedure, Journal of Chemometrics, 6, 4, 189-198 (1992)
[20] Cummins, D. J.; Andrews, C. W., Iteratively reweighted partial least squares: a performance analysis by monte carlo simulation, Journal of Chemometrics, 9, 6, 489-507 (1995) · doi:10.1002/cem.1180090607
[21] Hubert, M.; Vanden Branden, K., Robust methods for partial least squares regression, Journal of Chemometrics, 17, 10, 537-549 (2003) · doi:10.1002/cem.822
[22] Serneels, S.; Croux, C.; Filzmoser, P.; Van Espen, P. J., Partial robust M-regression, Chemometrics and Intelligent Laboratory Systems, 79, 1-2, 55-64 (2005) · doi:10.1016/j.chemolab.2005.04.007
[23] Gao, C.; Jian, L.; Luo, S., Modeling of the thermal state change of blast furnace hearth with support vector machines, IEEE Transactions on Industrial Electronics, 59, 2, 1134-1145 (2012) · doi:10.1109/TIE.2011.2159693
[24] Wang, D., Robust data-driven modeling approach for real-time final product quality prediction in batch process operation, IEEE Transactions on Industrial Informatics, 7, 2, 371-377 (2011) · doi:10.1109/TII.2010.2103401
[25] Dayal, B.; Macgregor, J. F., Improved pls algorithms, Journal of Chemometrics, 11, 1, 73-85 (1997)
[26] Zhou, D.; Li, G.; Qin, S. J., Total projection to latent structures for process monitoring, AIChE Journal, 56, 1, 168-178 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.