×

Cluster projective synchronization of fractional-order complex network via pinning control. (English) Zbl 1476.34117

Summary: Synchronization is the strongest form of collective phenomena in complex systems of interacting components. In this paper, the problem of cluster projective synchronization of complex networks with fractional-order nodes based on the fractional-order differential equation stability theory is investigated. Only the nodes in one community which have direct connections to the nodes in other communities are controlled. Some sufficient synchronization conditions are derived via pinning control. Numerical simulations are provided to show the effectiveness of the theoretical results.

MSC:

34D06 Synchronization of solutions to ordinary differential equations
34A08 Fractional ordinary differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
34H05 Control problems involving ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Strogatz, S. H., Exploring complex networks, Nature, 410, 6825, 268-276 (2001) · Zbl 1370.90052 · doi:10.1038/35065725
[2] Horne, A. B.; Hodgman, T. C.; Spence, H. D.; Dalby, A. R., Constructing an enzyme-centric view of metabolism, Bioinformatics, 20, 13, 2050-2055 (2004) · doi:10.1093/bioinformatics/bth199
[3] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.-U., Complex networks: structure and dynamics, Physics Reports, 424, 4-5, 175-308 (2006) · Zbl 1371.82002 · doi:10.1016/j.physrep.2005.10.009
[4] Hu, J.; Wang, Z.; Shen, B.; Gao, H., Gain-constrained recursive filtering with stochastic nonlinearities and probabilistic sensor delays, IEEE Transactions on Signal Processing, 61, 5, 1230-1238 (2013) · Zbl 1393.94261 · doi:10.1109/TSP.2012.2232660
[5] Hu, J.; Wang, Z.; Dong, H.; Gao, H., Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: a survey, Mathematical Problems in Engineering, 2013 (2013) · Zbl 1299.93262 · doi:10.1155/2013/646059
[6] Lü, J.; Yu, X.; Chen, G., Chaos synchronization of general complex dynamical networks, Physica A, 334, 1-2, 281-302 (2004) · doi:10.1016/j.physa.2003.10.052
[7] Wang, X.; Chen, G., Synchronization in small-world dynamical networks, International Journal of Bifurcation and Chaos, 12, 1, 187-192 (2002) · doi:10.1142/S0218127402004292
[8] Yang, M.; Liu, Y.; You, Z.; Sheng, P., Global synchronization for directed complex networks, Nonlinear Analysis: Real World Applications, 11, 3, 2127-2135 (2010) · Zbl 1188.93095 · doi:10.1016/j.nonrwa.2009.06.007
[9] Wang, K.; Fu, X.; Li, K., Cluster synchronization in community networks with nonidentical nodes, Chaos, 19, 2 (2009) · Zbl 1309.34107 · doi:10.1063/1.3125714
[10] Li, C.; Chen, G., Synchronization in general complex dynamical networks with coupling delays, Physica A, 343, 263-278 (2004) · doi:10.1016/j.physa.2004.05.058
[11] Zheng, S.; Dong, G.; Bi, Q., Impulsive synchronization of complex networks with non-delayed and delayed coupling, Physics Letters A, 373, 46, 4255-4259 (2009) · Zbl 1234.05220 · doi:10.1016/j.physleta.2009.09.043
[12] Wang, J.-W.; Ma, Q.; Zeng, L.; Abd-Elouahab, M. S., Mixed outer synchronization of coupled complex networks with time-varying coupling delay, Chaos, 21, 1 (2011) · Zbl 1345.34102 · doi:10.1063/1.3555836
[13] Ayati, M.; Khaki-Sedigh, A., Adaptive control of nonlinear in parameters chaotic system via Lyapunov exponents placement, Chaos, Solitons and Fractals, 41, 4, 1980-1986 (2009) · Zbl 1198.93103 · doi:10.1016/j.chaos.2008.08.017
[14] Wang, X.-Y.; Song, J.-M., Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control, Communications in Nonlinear Science and Numerical Simulation, 14, 8, 3351-3357 (2009) · Zbl 1221.93091 · doi:10.1016/j.cnsns.2009.01.010
[15] Hu, J.; Wang, Z.; Shen, B.; Gao, H., Quantised recursive filtering for a class of nonlinear systems with multiplicative noises and missing measurements, International Journal of Control, 86, 4, 650-663 (2013) · Zbl 1278.93269 · doi:10.1080/00207179.2012.756149
[16] Hu, J.; Chen, D.; Du, J., State estimation for a class of discrete nonlinear systems with randomly occurring uncertainties and distributed sensor delays, International Journal of General Systems, 43, 3-4, 387-401 (2014) · Zbl 1302.93201 · doi:10.1080/03081079.2014.892251
[17] Hu, J.; Wang, Z.; Gao, H., Recursive filtering with random parameter matrices, multiple fading measurements and correlated noises, Automatica, 49, 11, 3440-3448 (2013) · Zbl 1315.93081 · doi:10.1016/j.automatica.2013.08.021
[18] Yang, L.-X.; Jiang, J., Adaptive synchronization of drive-response fractional-order complex dynamical networks with uncertain parameters, Communications in Nonlinear Science and Numerical Simulation, 19, 5, 1496-1506 (2014) · Zbl 1457.34017 · doi:10.1016/j.cnsns.2013.09.021
[19] Yu, W.; Chen, G.; Lü, J., On pinning synchronization of complex dynamical networks, Automatica, 45, 2, 429-435 (2009) · Zbl 1158.93308 · doi:10.1016/j.automatica.2008.07.016
[20] Porfiri, M.; Fiorilli, F., Experiments on node-to-node pinning control of Chua’s circuits, Physica D, 239, 8, 454-464 (2010) · Zbl 1193.37140 · doi:10.1016/j.physd.2010.01.012
[21] Yang, L.-X.; Jiang, J., Hybrid projective synchronization of fractional-order chaotic systems with time delay, Discrete Dynamics in Nature and Society, 2013 (2013) · Zbl 1417.34152 · doi:10.1155/2013/459801
[22] Matignon, D., Stability results of fractional differential equations with applications to control processing, Proceedings of the IEEE-SMC International Association for Mathematics and Computers in Simulation (IMACS ’96)
[23] Li, K.; Small, M.; Fu, X., Generation of clusters in complex dynamical networks via pinning control, Journal of Physics A: Mathematical and Theoretical, 41, 50 (2008) · Zbl 1152.93002 · doi:10.1088/1751-8113/41/50/505101
[24] Guo, W., Lag synchronization of complex networks via pinning control, Nonlinear Analysis: Real World Applications, 12, 5, 2579-2585 (2011) · Zbl 1223.93057 · doi:10.1016/j.nonrwa.2011.03.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.