Lao, Seng-Kin; Tam, Lap-Mou; Chen, Hsien-Keng; Sheu, Long-Jye Hybrid stability checking method for synchronization of chaotic fractional-order systems. (English) Zbl 1406.93238 Abstr. Appl. Anal. 2014, Article ID 316368, 11 p. (2014). Summary: A hybrid stability checking method is proposed to verify the establishment of synchronization between two hyperchaotic systems. During the design stage of a synchronization scheme for chaotic fractional-order systems, a problem is sometimes encountered. In order to ensure the stability of the error signal between two fractional-order systems, the arguments of all eigenvalues of the Jacobian matrix of the erroneous system should be within a region defined in Matignon’s theorem. Sometimes, the arguments depend on the state variables of the driving system, which makes it difficult to prove the stability. We propose a new and efficient hybrid method to verify the stability in this situation. The passivity-based control scheme for synchronization of two hyperchaotic fractional-order Chen-Lee systems is provided as an example. Theoretical analysis of the proposed method is validated by numerical simulation in time domain and examined in frequency domain via electronic circuits. Cited in 1 Document MSC: 93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory 26A33 Fractional derivatives and integrals 34A08 Fractional ordinary differential equations 34H10 Chaos control for problems involving ordinary differential equations 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior Keywords:hybrid stability; synchronization; chaotic fractional-order systems × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Fujisaka, H.; Yamada, T., Stability theory of synchronized motion in coupled-oscillator systems, Progress of Theoretical Physics, 69, 1, 32-47 (1983) · Zbl 1171.70306 · doi:10.1143/PTP.69.32 [2] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Physical Review Letters, 64, 8, 821-824 (1990) · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821 [3] Butkovskii, A. G.; Postnov, S. S.; Postnova, E. A., Fractional integro-differential calculus and its control-theoretical applications. II. Fractional dynamic systems: modeling and hardware implementation, Automation and Remote Control, 74, 5, 725-749 (2013) · Zbl 1268.93069 [4] Berli, M., Challenges in the application of fractional derivative models in capturing solute transport in porous media: darcy-scale fractional dispersion and the influence of medium properties, Mathematical Problems in Engineering, 2013 (2013) · doi:10.1155/2013/878097 [5] Yang, X. J.; Baleanu, D., Fractional heat conduction problem solved by local fractional variation iteration method, Thermal Science, 17, 5, 625-628 (2013) · doi:10.2298/TSCI121124216Y [6] Magin, R. L., Fractional calculus models of complex dynamics in biological tissues, Computers & Mathematics with Applications, 59, 5, 1586-1593 (2010) · Zbl 1189.92007 · doi:10.1016/j.camwa.2009.08.039 [7] Charef, A.; Sun, H. H.; Tsao, Y.-Y.; Onaral, B., Fractal system as represented by singularity function, Institute of Electrical and Electronics Engineers. Transactions on Automatic Control, 37, 9, 1465-1470 (1992) · Zbl 0825.58027 · doi:10.1109/9.159595 [8] Tavazoei, M. S.; Haeri, M., Limitations of frequency domain approximation for detecting chaos in fractional order systems, Nonlinear Analysis. Theory, Methods & Applications Series A: Theory and Methods, 69, 4, 1299-1320 (2008) · Zbl 1148.65094 · doi:10.1016/j.na.2007.06.030 [9] Matsuda, K.; Fujii, H., \(H_\infty\) optimized wave-absorbing control: analytical and experimental results, Journal of Guidance, Control, and Dynamics, 16, 6, 1146-1153 (1993) · Zbl 0800.93313 [10] Petráš, I., A note on the fractional-order Chua’s system, Chaos, Solitons and Fractals, 38, 1, 140-147 (2008) · doi:10.1016/j.chaos.2006.10.054 [11] Diethelm, K., Efficient solution of multi-term fractional differential equations using P(EC)\(^m\) E methods, Computing. Archives for Scientific Computing, 71, 4, 305-319 (2003) · Zbl 1035.65066 · doi:10.1007/s00607-003-0033-3 [12] Miller, K. S.; Ross, B., Fractional difference calculus, Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications, Nihon University · Zbl 0693.39002 [13] Wu, G.-C.; Baleanu, D., Discrete fractional logistic map and its chaos, Nonlinear Dynamics. An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems, 75, 1-2, 283-287 (2014) · Zbl 1281.34121 · doi:10.1007/s11071-013-1065-7 [14] El-Sayed, A. M. A.; Nasr, M. E., Discontinuous dynamical systems and fractional-orders difference equations, Journal of Fractional Calculus and Applications, 4, 1, 130-138 (2013) · Zbl 1488.39009 [15] Zhao, H.; Kwan, H. K.; Yu, J., Fractional discrete-time chaotic map, Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS ’06) [16] Wu, G. C.; Baleanu, D.; Zeng, S.-D., Discrete chaos in fractional sine and standard maps, Physics Letters A, 378, 5-6, 484-487 (2014) · Zbl 1331.37048 · doi:10.1016/j.physleta.2013.12.010 [17] Jarad, F.; Abdeljawad, T.; Baleanu, D.; Biçen, K., On the stability of some discrete fractional nonautonomous systems, Abstract and Applied Analysis, 2012 (2012) · Zbl 1235.93206 · doi:10.1155/2012/476581 [18] Chen, H. K.; Lee, C. I., Anti-control of chaos in rigid body motion, Chaos, Solitons and Fractals, 21, 4, 957-965 (2004) · Zbl 1046.70005 · doi:10.1016/j.chaos.2003.12.034 [19] Tam, L. M.; Si Tou, W. M., Parametric study of the fractional-order Chen-Lee system, Chaos, Solitons and Fractals, 37, 3, 817-826 (2008) · doi:10.1016/j.chaos.2006.09.067 [20] Sheu, L. J.; Chen, H. K.; Chen, J. H.; Tam, L.; Chen, W.; Lao, S.; Lin, K., Complete synchronization of two Chen-Lee systems, Journal of Physics: Conference Series, 96, 1 (2008) · doi:10.1088/1742-6596/96/1/012138 [21] Chen, J. H.; Chen, H. K.; Lin, Y. K., Synchronization and anti-synchronization coexist in Chen-Lee chaotic systems, Chaos, Solitons and Fractals, 39, 2, 707-716 (2009) · Zbl 1197.37003 · doi:10.1016/j.chaos.2007.01.104 [22] Chen, J. H., Controlling chaos and chaotification in the Chen-Lee system by multiple time delays, Chaos, Solitons and Fractals, 36, 4, 843-852 (2008) · doi:10.1016/j.chaos.2006.10.049 [23] Sheu, L. J.; Tam, L. M.; Chen, H. K.; Lao, S. K., Alternative implementation of the chaotic Chen-Lee system, Chaos, Solitons and Fractals, 41, 4, 1923-1929 (2009) · doi:10.1016/j.chaos.2008.07.053 [24] Tam, L. M.; Lao, S. K.; Chen, H. K.; Sheu, L. J., Hybrid projective synchronization for the fractional-order Chen-Lee system and its circuit realization, Applied Mechanics and Materials, 300, 1573-1578 (2013) [25] Chen, H.-K.; Sheu, L.-J.; Tam, L.-M.; Lao, S.-K., A new finding of the existence of Feigenbaum’s constants in the fractional-order Chen-Lee system, Nonlinear Dynamics. An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems, 68, 4, 589-599 (2012) · doi:10.1007/s11071-011-0240-y [26] Chen, C.-H.; Sheu, L.-J.; Chen, H.-K.; Chen, J.-H.; Wang, H.-C.; Chao, Y.-C.; Lin, Y.-K., A new hyper-chaotic system and its synchronization, Nonlinear Analysis. Real World Applications. An International Multidisciplinary Journal, 10, 4, 2088-2096 (2009) · Zbl 1163.65337 · doi:10.1016/j.nonrwa.2008.03.015 [27] Byrnes, C. I.; Isidori, A.; Willems, J. C., Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems, Institute of Electrical and Electronics Engineers. Transactions on Automatic Control, 36, 11, 1228-1240 (1991) · Zbl 0758.93007 · doi:10.1109/9.100932 [28] Yu, W., Passive equivalence of chaos in Lorenz system, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 46, 7, 876-878 (1999) · doi:10.1109/81.774240 [29] Emiroçlu, S.; Uyaroǧlu, Y., Control of Rabinovich chaotic system based on passive control, Scientific Research and Essays, 5, 21, 3298-3305 (2010) [30] Wang, F.; Liu, C., Synchronization of unified chaotic system based on passive control, Physica D. Nonlinear Phenomena, 225, 1, 55-60 (2007) · Zbl 1119.34332 · doi:10.1016/j.physd.2006.09.038 [31] Xiang-Jun, W.; Jing-Sen, L.; Guan-Rong, C., Chaos synchronization of Rikitake chaotic attractor using the passive control technique, Nonlinear Dynamics. An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems, 53, 1-2, 45-53 (2008) · Zbl 1170.70403 · doi:10.1007/s11071-007-9294-2 [32] Zhou, X.; Xiong, L.; Cai, W.; Cai, X., Adaptive synchronization and antisynchronization of a hyperchaotic complex Chen system with unknown parameters based on passive control, Journal of Applied Mathematics, 2013 (2013) · Zbl 1266.93087 · doi:10.1155/2013/845253 [33] Wu, C. J.; Zhang, Y. B.; Yang, N. N., The synchronization of a fractional order hyperchaotic system based on passive control, Chinese Physics B, 20, 6 (2011) · doi:10.1088/1674-1056/20/6/060505 [34] Matignon, D., Stability results for fractional differential equations with applications to control processing, Proceedings of the Computational Engineering in Systems and Application Multiconference [35] Wang, F. Q.; Liu, C. X., Study on the critical chaotic system with fractional order and circuit experiment, Acta Physica Sinica, 55, 8, 3922-3927 (2006) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.