×

Travelling wave solutions of nonlinear dynamical equations in a double-chain model of DNA. (English) Zbl 1468.35091

Summary: We consider the nonlinear dynamics in a double-chain model of DNA which consists of two long elastic homogeneous strands connected with each other by an elastic membrane. By using the method of dynamical systems, the bounded traveling wave solutions such as bell-shaped solitary waves and periodic waves for the coupled nonlinear dynamical equations of DNA model are obtained and simulated numerically. For the same wave speed, bell-shaped solitary waves of different heights are found to coexist.

MSC:

35L51 Second-order hyperbolic systems
35C07 Traveling wave solutions
35L71 Second-order semilinear hyperbolic equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences
92D20 Protein sequences, DNA sequences
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Watson, J. D.; Crick, F. H. C., Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid, Nature, 171, 4356, 737-738 (1953) · doi:10.1038/171737a0
[2] Peyrard, M.; López, S. C.; James, G., Modelling DNA at the mesoscale: a challenge for nonlinear science?, Nonlinearity, 21, T91 (2008) · Zbl 1162.92308 · doi:10.1088/0951-7715/21/6/T02
[3] Lipniacki, T., Chemically driven traveling waves in DNA, Physical Review E, 60, 7253 (1999) · doi:10.1103/PhysRevE.60.7253
[4] Yomosa, S., Solitary excitations in deoxyribonuclei acid (DNA) double helices, Physical Review A, 30, 1, 474-480 (1984) · doi:10.1103/PhysRevA.30.474
[5] Zhang, C. T., Soliton excitations in deoxyribonucleic acid (DNA) double helices, Physical Review A, 35, 2, 886-891 (1987) · doi:10.1103/PhysRevA.35.886
[6] Forinash, K., Nonlinear dynamics in a double-chain model of DNA, Physical Review B, 43, 10734 (1991) · doi:10.1103/PhysRevB.43.10743
[7] Yakushevich, L. V., Nonlinear Physics of DNA (2004), Berlin, Germany: John Wiley & Sons, Berlin, Germany · Zbl 0913.92001
[8] Englander, S. W.; Kallenbanch, N. R.; Heeger, A. J.; Krumhansl, J. A.; Litwin, S., Nature of the open state in long polynucleotide double helices: possibility of soliton excitations, Proceedings of the National Academy of Sciences of the United States of America, 77, 7222-7226 (1980) · doi:10.1073/pnas.77.12.7222
[9] Yomosa, S., Soliton excitations in deoxyribonucleic acid (DNA) double helices, Physical Review A, 27, 4, 2120-2125 (1983) · doi:10.1103/PhysRevA.27.2120
[10] Takeno, S.; Homma, S., A coupled base-rotator model for structure and dynamics of DNA—local fluctuations in helical twist angles and topological solitons, Progress of Theoretical Physics, 72, 4, 679-693 (1984) · Zbl 1074.92501 · doi:10.1143/PTP.72.679
[11] Peyrard, M.; Bishop, A. R., Statistical mechanics of a nonlinear model for DNA denaturation, Physical Review Letters, 62, 23, 2755-2758 (1989) · doi:10.1103/PhysRevLett.62.2755
[12] Dauxois, T.; Peyrard, M.; Bishop, A. R., Entropy-driven DNA denaturation, Physical Review E, 47, 1, R44-R47 (1993) · doi:10.1103/PhysRevE.47.R44
[13] Muto, V.; Lomdahl, P. S.; Christiansen, P. L., Two-dimensional discrete model for DNA dynamics: longitudinal wave propagation and denaturation, Physical Review A, 42, 12, 7452-7458 (1990) · doi:10.1103/PhysRevA.42.7452
[14] Kong, D. X.; Lou, S. Y.; Zeng, J., Nonlinear dynamics in a new double Chain-model of DNA, Communications in Theoretical Physics, 36, 6, 737-742 (2001)
[15] Qian, X.-M.; Lou, S.-Y., Exact solutions of nonlinear dynamics equation in a new double-chain model of DNA, Communications in Theoretical Physics, 39, 4, 501-505 (2003)
[16] Alka, W.; Goyal, A.; Nagaraja Kumar, C., Nonlinear dynamics of DNA—riccati generalized solitary wave solutions, Physics Letters A: General, Atomic and Solid State Physics, 375, 3, 480-483 (2011) · Zbl 1241.35205 · doi:10.1016/j.physleta.2010.11.017
[17] Chow, S. N.; Hale, J. K., Methods of Bifurcation Theory (1981), Berlin, Germany: Springer, Berlin, Germany
[18] Li, J. B.; Liu, Z. R., Smooth and non-smooth traveling waves in a nonlinearly dispersive equation, Applied Mathematical Modelling, 25, 41-56 (2000) · Zbl 0985.37072 · doi:10.1016/S0307-904X(00)00031-7
[19] Li, J. B.; Liu, Z. R., Traveling wave solutions for a class of nonlinear dispersive equations, Chinese Annals of Mathematics, 23, 397 (2002) · Zbl 1011.35014 · doi:10.1142/S0252959902000365
[20] Liu, Z. R.; Ouyang, Z. Y., A note on solitary waves for modified forms of Camassa-Holm and Degasperis-Procesi equations, Physics Letters A, 366, 4-5, 377-381 (2007) · Zbl 1203.35234 · doi:10.1016/j.physleta.2007.01.074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.