Ismail, M. S.; Mosally, Farida A fourth order finite difference method for the good Boussinesq equation. (English) Zbl 1470.65151 Abstr. Appl. Anal. 2014, Article ID 323260, 10 p. (2014). Summary: The “good” Boussinesq equation is transformed into a first order differential system. A fourth order finite difference scheme is derived for this system. The resulting scheme is analyzed for accuracy and stability. Newton’s method and linearization techniques are used to solve the resulting nonlinear system. The exact solution and the conserved quantity are used to assess the accuracy and the efficiency of the derived method. Head-on and overtaking interactions of two solitons are also considered. The numerical results reveal the good performance of the derived method. Cited in 11 Documents MSC: 65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs 35Q53 KdV equations (Korteweg-de Vries equations) × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] Ablowitz, M. J.; Segur, H., Solitons and the Inverse Scattering Transform. Solitons and the Inverse Scattering Transform, SIAM Studies in Applied Mathematics, 4 (1981), Philadelphia, Pa, USA: Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA · Zbl 0472.35002 [2] Biswas, A.; Raslan, K. R., Numerical simulation of the modified Korteweg-de Vries equation, Physics of Wave Phenomena, 19, 2, 142-147 (2011) · doi:10.3103/S1541308X11020105 [3] Domairry, G.; Davodi, A. G.; Davodi, A. G., Solutions for the double sine-Gordon equation by exp-function, tanh, and extended tanh methods, Numerical Methods for Partial Differential Equations, 26, 2, 384-398 (2010) · Zbl 1185.65188 · doi:10.1002/num.20440 [4] Hirota, R., Exact \(N\)-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices, Journal of Mathematical Physics, 14, 810-814 (1973) · Zbl 0261.76008 · doi:10.1063/1.1666400 [5] Leblond, H.; Triki, H.; Mihalache, D., Derivation of a generalized double sine-Gordon equation describing ultrashort soliton propagation in optical media composed of multilevel atoms, Physical Review A, 86 (2012) · doi:10.1103/PhysRevA.86.063825 [6] Liu, H.; Li, J., Symmetry reductions, dynamical behavior and exact explicit solutions to the Gordon types of equations, Journal of Computational and Applied Mathematics, 257, 144-156 (2014) · Zbl 1302.37034 · doi:10.1016/j.cam.2013.08.022 [7] Mokhtari, R.; Mohseni, M., A meshless method for solving mKdV equation, Computer Physics Communications, 183, 6, 1259-1268 (2012) · Zbl 1282.65123 · doi:10.1016/j.cpc.2012.02.006 [8] Whitham, G. B., Linear and Nonlinear Waves (1974), New York, NY, USA: Wiley-Interscience, New York, NY, USA · Zbl 0373.76001 [9] Aydın, A.; Karasözen, B., Lobatto IIIA-IIIB discretization of the strongly coupled nonlinear Schrödinger equation, Journal of Computational and Applied Mathematics, 235, 16, 4770-4779 (2011) · Zbl 1220.65176 · doi:10.1016/j.cam.2010.09.017 [10] Bai, D.; Wang, J., The time-splitting Fourier spectral method for the coupled Schrödinger-Boussinesq equations, Communications in Nonlinear Science and Numerical Simulation, 17, 3, 1201-1210 (2012) · Zbl 1245.35116 · doi:10.1016/j.cnsns.2011.08.012 [11] Ismail, M. S.; Taha, T. R., Parallel methods and higher dimensional NLS equations, Abstract and Applied Analysis, 2013 (2013) · Zbl 1291.65265 · doi:10.1155/2013/497439 [12] Ismail, M. S.; Biswas, A., 1-soliton solution of the Klein-Gordon-Zakharov equation with power law nonlinearity, Applied Mathematics and Computation, 217, 8, 4186-4196 (2010) · Zbl 1206.35219 · doi:10.1016/j.amc.2010.10.035 [13] Ismail, M. S., Numerical solution of complex modified Korteweg-de Vries equation by collocation method, Communications in Nonlinear Science and Numerical Simulation, 14, 3, 749-759 (2009) · Zbl 1221.65262 · doi:10.1016/j.cnsns.2007.12.005 [14] Ismail, M. S., Numerical solution of a coupled Korteweg-de Vries equations by collocation method, Numerical Methods for Partial Differential Equations, 25, 2, 275-291 (2009) · Zbl 1159.65347 · doi:10.1002/num.20343 [15] Ismail, M. S., A fourth-order explicit schemes for the coupled nonlinear Schrödinger equation, Applied Mathematics and Computation, 196, 1, 273-284 (2008) · Zbl 1133.65063 · doi:10.1016/j.amc.2007.05.059 [16] Ismail, M. S., Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method, Mathematics and Computers in Simulation, 78, 4, 532-547 (2008) · Zbl 1145.65075 · doi:10.1016/j.matcom.2007.07.003 [17] Ismail, M. S.; Taha, T. R., A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation, Mathematics and Computers in Simulation, 74, 4-5, 302-311 (2007) · Zbl 1112.65079 · doi:10.1016/j.matcom.2006.10.020 [18] Kutluay, S.; Ucar, Y., Numerical solution of coupled modied Korteweg-devries equation by Galerkin method using quadratic spline, International Journal of Computer Mathematics, 90, 11, 2353-2371 (2013) · Zbl 1282.65120 · doi:10.1080/00207160.2013.775425 [19] Manoranjan, V. S.; Mitchell, A. R.; Morris, J. Ll., Numerical solutions of the good Boussinesq equation, Society for Industrial and Applied Mathematics, 5, 4, 946-957 (1984) · Zbl 0555.65080 · doi:10.1137/0905065 [20] Ray, S. S., Soliton solutions for time fractional coupled modified KdV equations using new coupled fractional reduced differential transform method, Journal of Mathematical Chemistry, 51, 8, 2214-2229 (2013) · Zbl 1321.35205 · doi:10.1007/s10910-013-0210-3 [21] Zhou, S.; Cheng, X., Numerical solution to coupled nonlinear Schrödinger equations on unbounded domains, Mathematics and Computers in Simulation, 80, 12, 2362-2373 (2010) · Zbl 1197.65162 · doi:10.1016/j.matcom.2010.05.019 [22] Hu, H.; Liu, L.; Zhang, L., New analytical positon, negaton and complexiton solutions of a coupled KdV-mKdV system, Applied Mathematics and Computation, 219, 11, 5743-5749 (2013) · Zbl 1273.35237 · doi:10.1016/j.amc.2012.12.054 [23] Bratsos, A. G., A second order numerical scheme for the solution of the one-dimensional Boussinesq equation, Numerical Algorithms, 46, 1, 45-58 (2007) · Zbl 1128.65063 · doi:10.1007/s11075-007-9126-y [24] Bratsos, A. G.; Tsitouras, Ch.; Natsis, D. G., Linearized numerical schemes for the Boussinesq equation, Applied Numerical Analysis and Computational Mathematics, 2, 1, 34-53 (2005) · Zbl 1069.65098 · doi:10.1002/anac.200410021 [25] Ismail, M. S.; Bratsos, A. G., A predictor-corrector scheme for the numerical solution of the Boussinesq equation, Journal of Applied Mathematics & Computing, 13, 1-2, 11-27 (2003) · Zbl 1045.65073 · doi:10.1007/BF02936071 [26] Mohebbi, A.; Asgari, Z., Efficient numerical algorithms for the solution of “good” Boussinesq equation in water wave propagation, Computer Physics Communications, 182, 12, 2464-2470 (2011) · Zbl 1457.65147 · doi:10.1016/j.cpc.2011.07.004 [27] Wazwaz, A.-M., Multiple-soliton solutions for the Boussinesq equation, Applied Mathematics and Computation, 192, 2, 479-486 (2007) · Zbl 1193.35201 · doi:10.1016/j.amc.2007.03.023 [28] Attili, B. S., The Adomian decomposition method for solving the Boussinesq equation arising in water wave propagation, Numerical Methods for Partial Differential Equations, 22, 6, 1337-1347 (2006) · Zbl 1106.76053 · doi:10.1002/num.20155 [29] Wazwaz, A.-M., New travelling wave solutions to the Boussinesq and the Klein-Gordon equations, Communications in Nonlinear Science and Numerical Simulation, 13, 5, 889-901 (2008) · Zbl 1221.35372 · doi:10.1016/j.cnsns.2006.08.005 [30] Wazwaz, A. M., Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method, Chaos, Solitons and Fractals, 12, 8, 1549-1556 (2001) · Zbl 1022.35051 · doi:10.1016/S0960-0779(00)00133-8 [31] Yildirim, A.; Mohyud-Din, S. T., A variational approach for soliton solutions of good Boussinesq equation, Journal of King Saud University, 22, 4, 205-208 (2010) · doi:10.1016/j.jksus.2010.04.013 [32] Biswas, A.; Milovic, D.; Ranasinghe, A., Solitary waves of Boussinesq equation in a power law media, Communications in Nonlinear Science and Numerical Simulation, 14, 11, 3738-3742 (2009) · Zbl 1221.35311 · doi:10.1016/j.cnsns.2009.02.021 [33] Bratsos, A. G., A parametric scheme for the numerical solution of the Boussinesq equation, The Korean Journal of Computational & Applied Mathematics, 8, 1, 45-57 (2001) · Zbl 0990.76057 [34] El-Zoheiry, H., Numerical investigation for the solitary waves interaction of the “good” Boussinesq equation, Applied Numerical Mathematics, 45, 2-3, 161-173 (2003) · Zbl 1061.76042 · doi:10.1016/S0168-9274(02)00187-3 [35] Aydin, A.; Karasözen, B., Symplectic and multisymplectic Lobatto methods for the “good” Boussinesq equation, Journal of Mathematical Physics, 49, 8 (2008) · Zbl 1152.35467 · doi:10.1063/1.2970148 [36] Daripa, P.; Hua, W., A numerical study of an ill-posed Boussinesq equation arising in water waves and nonlinear lattices: filtering and regularization techniques, Applied Mathematics and Computation, 101, 2-3, 159-207 (1999) · Zbl 0937.76050 · doi:10.1016/S0096-3003(98)10070-X [37] Matsuo, T., New conservative schemes with discrete variational derivatives for nonlinear wave equations, Journal of Computational and Applied Mathematics, 203, 1, 32-56 (2007) · Zbl 1120.65096 · doi:10.1016/j.cam.2006.03.009 [38] Dehghan, M.; Salehi, R., A meshless based numerical technique for traveling solitary wave solution of Boussinesq equation, Applied Mathematical Modelling, 36, 5, 1939-1956 (2012) · Zbl 1243.76069 · doi:10.1016/j.apm.2011.07.075 [39] Mitchell, A. R.; Gritthes, D., Finite Difference Method (1980), New York, NY, USA: Wiley, New York, NY, USA This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.