×

Two new types of fixed point theorems in complete metric spaces. (English) Zbl 1436.54035

Summary: We introduce two new types of fixed point theorems in the collection of multivalued and single-valued mappings in complete metric spaces.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
54E40 Special maps on metric spaces
54E50 Complete metric spaces
54C60 Set-valued maps in general topology

References:

[1] Leader, S., Equivalent Cauchy sequences and contractive fixed points in metric spaces, Studia Mathematica, 76, 1, 63-67 (1983) · Zbl 0469.54028
[2] Rus, I. A., Picard operators and applications, Scientiae Mathematicae, 58, 1, 191-219 (2003) · Zbl 1031.47035
[3] Subrahmanyam, P. V., Remarks on some fixed point theorems related to Banach’s contraction principle, Journal of Mathematical and Physical Sciences, 8, 445-457 (1974) · Zbl 0294.54033
[4] Rus, I. A.; Muresan, A. S.; Muresan, V., Weakly Picard operators on a set with two metrics, Fixed Point Theory, 6, 2, 323-331 (2005) · Zbl 1112.47306
[5] Caristi, J., Fixed point theorems for mappings satisfying inwardness conditions, Transactions of the American Mathematical Society, 215, 241-251 (1976) · Zbl 0305.47029 · doi:10.1090/S0002-9947-1976-0394329-4
[6] Caristi, J.; Kirk, W. A., Geometric fixed point theory and inwardness conditions, The Geometry of Metric and Linear Spaces. The Geometry of Metric and Linear Spaces, Lecture Notes in Mathematics, 490, 74-83 (1975), Berlin, Germany: Springer, Berlin, Germany · Zbl 0315.54052 · doi:10.1007/BFb0081133
[7] Banach, S., Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fundamenta Mathematicae, 3, 133-181 (1922) · JFM 48.0201.01
[8] Ćirić, L. B., A generalization of Banach’s contraction principle, Proceedings of the American Mathematical Society, 45, 267-273 (1974) · Zbl 0291.54056
[9] Kannan, R., Some results on fixed points—II, The American Mathematical Monthly, 76, 4, 405-408 (1969) · Zbl 0179.28203 · doi:10.2307/2316437
[10] Kirk, W. A., Fixed points of asymptotic contractions, Journal of Mathematical Analysis and Applications, 277, 2, 645-650 (2003) · Zbl 1022.47036 · doi:10.1016/S0022-247X(02)00612-1
[11] Matkowski, J., Integrable solutions of functional equations, Dissertationes Mathematicae, 127, 1-68 (1975) · Zbl 0318.39005
[12] Meir, A.; Keeler, E., A theorem on contraction mappings, Journal of Mathematical Analysis and Applications, 28, 326-329 (1969) · Zbl 0194.44904 · doi:10.1016/0022-247X(69)90031-6
[13] Suzuki, T., Generalized distance and existence theorems in complete metric spaces, Journal of Mathematical Analysis and Applications, 253, 2, 440-458 (2001) · Zbl 0983.54034 · doi:10.1006/jmaa.2000.7151
[14] Suzuki, T., Several fixed point theorems concerning \(\tau \)-distance, Fixed Point Theory and Applications, 2004, 3, 195-209 (2004) · Zbl 1076.54532 · doi:10.1155/S168718200431003X
[15] Suzuki, T., A sufficient and necessary condition for the convergence of the sequence of successive approximations to a unique fixed point, Proceedings of the American Mathematical Society, 136, 11, 4089-4093 (2008) · Zbl 1152.54033 · doi:10.1090/S0002-9939-08-09390-8
[16] Bae, J. S., Fixed point theorems for weakly contractive multivalued maps, Journal of Mathematical Analysis and Applications, 284, 2, 690-697 (2003) · Zbl 1033.47038 · doi:10.1016/S0022-247X(03)00387-1
[17] Bae, J. S.; Cho, E. W.; Yeom, S. H., A generalization of the Caristi-Kirk fixed point theorem and its applications to mapping theorems, Journal of the Korean Mathematical Society, 31, 1, 29-48 (1994) · Zbl 0842.47035
[18] Kirk, W. A.; Kirk, W. A.; Sims, B., Contraction mappings and extensions, Handbook of Metric Fixed Point Theory, 1-34 (2001), Dordrecht, The Netherlands: Kluwer Academic, Dordrecht, The Netherlands · Zbl 1019.54001
[19] Aydi, H.; Shatanawi, W.; Postolache, M.; Mustafa, Z.; Tahat, N., Theorems for Boyd-Wong-type contractions in ordered metric spaces, Abstract and Applied Analysis, 2012 (2012) · Zbl 1253.54036 · doi:10.1155/2012/359054
[20] Chandok, S.; Postolache, M., Fixed point theorem for weakly Chatterjea-type cyclic contractions, Fixed Point Theory and Applications, 2013, 28 (2013) · Zbl 1300.54060 · doi:10.1186/1687-1812-2013-28
[21] Chandok, S.; Mustafa, Z.; Postolache, M., Coupled common fixed point results for mixed \(g\)-monotone mapps in partially ordered \(G\)-metric spaces, University Politehnica of Bucharest Scientific Bulletin A, 75, 4, 13-26 (2013) · Zbl 1299.41058
[22] Chen, Y., Stability of positive fixed points of nonlinear operators, Positivity, 6, 1, 47-57 (2002) · Zbl 1008.47048 · doi:10.1023/A:1012079817987
[23] Choudhury, B. S.; Metiya, N.; Postolache, M., A generalized weak contraction principle with applications to coupled coincidence point problems, Fixed Point Theory and Applications, 2013, article 152 (2013) · Zbl 1295.54050 · doi:10.1186/1687-1812-2013-152
[24] Haghi, R. H.; Postolache, M.; Rezapour, S., On T-stability of the Picard iteration for generalized \(\varphi \)-contraction mappings, Abstract and Applied Analysis, 2012 (2012) · Zbl 1252.54035 · doi:10.1155/2012/658971
[25] Ilić, D.; Rakočević, V., Common fixed points for maps on cone metric space, Journal of Mathematical Analysis and Applications, 341, 2, 876-882 (2008) · Zbl 1156.54023 · doi:10.1016/j.jmaa.2007.10.065
[26] Jachymski, J., The contraction principle for mappings on a metric space with a graph, Proceedings of the American Mathematical Society, 136, 4, 1359-1373 (2008) · Zbl 1139.47040 · doi:10.1090/S0002-9939-07-09110-1
[27] Lakshmikantham, V.; Ćirić, L., Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis: Theory, Methods & Applications, 70, 12, 4341-4349 (2009) · Zbl 1176.54032 · doi:10.1016/j.na.2008.09.020
[28] Nieto, J. J.; Pouso, R. L.; Rodriguez-Lopez, R., Fixed point theorems in ordered abstract spaces, Proceedings of the American Mathematical Society, 135, 8, 2505-2517 (2007) · Zbl 1126.47045 · doi:10.1090/S0002-9939-07-08729-1
[29] Nieto, J. J.; Rodriguez-Lopez, R., Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22, 3, 223-239 (2005) · Zbl 1095.47013 · doi:10.1007/s11083-005-9018-5
[30] Nieto, J. J.; Rodríguez-López, R., Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Mathematica Sinica, 23, 12, 2205-2212 (2007) · Zbl 1140.47045 · doi:10.1007/s10114-005-0769-0
[31] O’Regan, D.; Petruşel, A., Fixed point theorems for generalized contractions in ordered metric spaces, Journal of Mathematical Analysis and Applications, 341, 2, 1241-1252 (2008) · Zbl 1142.47033 · doi:10.1016/j.jmaa.2007.11.026
[32] Pathak, H. K.; Shahzad, N., Fixed points for generalized contractions and applications to control theory, Nonlinear Analysis. Theory, Methods & Applications, 68, 8, 2181-2193 (2008) · Zbl 1144.54031 · doi:10.1016/j.na.2007.01.041
[33] Shatanawi, W.; Postolache, M., Common fixed point theorems for dominating and weak annihilator mappings in ordered metric spaces, Fixed Point Theory and Applications, 2013, article 271 (2013) · Zbl 1297.54102 · doi:10.1186/1687-1812-2013-271
[34] Shatanawi, W.; Postolache, M., Common fixed point results for mappings under nonlinear contraction of cyclic form in ordered metric spaces, Fixed Point Theory and Applications, 2013, 60 (2013) · Zbl 1286.54053 · doi:10.1186/1687-1812-2013-60
[35] Wu, Y., New fixed point theorems and applications of mixed monotone operator, Journal of Mathematical Analysis and Applications, 341, 2, 883-893 (2008) · Zbl 1137.47044 · doi:10.1016/j.jmaa.2007.10.063
[36] Nadler, J., Multi-valued contraction mappings, Pacific Journal of Mathematics, 30, 475-488 (1969) · Zbl 0187.45002 · doi:10.2140/pjm.1969.30.475
[37] Amini-Harandi, A., Endpoints of set-valued contractions in metric spaces, Nonlinear Analysis: Theory, Methods & Applications, 72, 1, 132-134 (2010) · Zbl 1226.54042 · doi:10.1016/j.na.2009.06.074
[38] Amini-Harandi, A., Fixed point theory for set-valued quasi-contraction maps in metric spaces, Applied Mathematics Letters, 24, 11, 1791-1794 (2011) · Zbl 1230.54034 · doi:10.1016/j.aml.2011.04.033
[39] Ciric, L. B.; Ume, J. S., Multi-valued non-self-mappings on convex metric spaces, Nonlinear Analysis: Theory, Methods & Applications, 60, 6, 1053-1063 (2005) · Zbl 1078.47015 · doi:10.1016/j.na.2004.09.057
[40] Fakhar, M., Endpoints of set-valued asymptotic contractions in metric spaces, Applied Mathematics Letters, 24, 4, 428-431 (2011) · Zbl 1206.54043 · doi:10.1016/j.aml.2010.10.028
[41] Hussain, N.; Amini-Harandi, A.; Cho, Y. J., Approximate endpoints for set-valued contractions in metric spaces, Fixed Point Theory and Applications, 2010 (2010) · Zbl 1202.54033 · doi:10.1155/2010/614867
[42] Kadelburg, Z.; Radenović, S., Some results on set-valued contractions in abstract metric spaces, Computers & Mathematics with Applications, 62, 1, 342-350 (2011) · Zbl 1228.54041 · doi:10.1016/j.camwa.2011.05.015
[43] Moradi, S.; Khojasteh, F., Endpoints of multi-valued generalized weak contraction mappings, Nonlinear Analysis: Theory, Methods & Applications, 74, 6, 2170-2174 (2011) · Zbl 1296.54077 · doi:10.1016/j.na.2010.11.021
[44] Khojasteh, F.; Rakočević V., Some new common fixed point results for generalized contractive multi-valued non-self-mappings, Applied Mathematics Letters, 25, 3, 287-293 (2012) · Zbl 1242.54024 · doi:10.1016/j.aml.2011.07.021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.