Kutbi, Marwan Amin; Sintunavarat, Wutiphol On sufficient conditions for the existence of past-present-future dependent fixed point in the Razumikhin class and application. (English) Zbl 1472.47045 Abstr. Appl. Anal. 2014, Article ID 342687, 8 p. (2014). Summary: We introduce the new type of nonself mapping and study sufficient conditions for the existence of past-present-future (for short PPF) dependent fixed point for such mapping in the Razumikhin class. Also, we apply our result to prove the PPF dependent coincidence point theorems. Finally, we use PPF dependence techniques to obtain solution for a nonlinear integral problem with delay. Cited in 5 Documents MSC: 47H10 Fixed-point theorems 47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc. 47N20 Applications of operator theory to differential and integral equations Keywords:past-present-future dependent fixed point; Razumikhin class; integral problem with delay × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Kannan, R., Some results on fixed points—II, The American Mathematical Monthly, 76, 405-408 (1969) · Zbl 0179.28203 · doi:10.2307/2316437 [2] Chatterjea, S. K., Fixed-point theorems, Comptes Rendus de l’Académie Bulgare des Sciences, 25, 727-730 (1972) · Zbl 0274.54033 [3] Berinde, V., Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Analysis Forum, 9, 1, 43-53 (2004) · Zbl 1078.47042 [4] Ćirić, L. B., A generalization of Banach’s contraction principle, Proceedings of the American Mathematical Society, 45, 267-273 (1974) · Zbl 0291.54056 [5] Geraghty, M. A., On contractive mappings, Proceedings of the American Mathematical Society, 40, 604-608 (1973) · Zbl 0245.54027 · doi:10.1090/S0002-9939-1973-0334176-5 [6] Meir, A.; Keeler, E., A theorem on contraction mappings, Journal of Mathematical Analysis and Applications, 28, 326-329 (1969) · Zbl 0194.44904 · doi:10.1016/0022-247X(69)90031-6 [7] Suzuki, T., A generalized Banach contraction principle that characterizes metric completeness, Proceedings of the American Mathematical Society, 136, 5, 1861-1869 (2008) · Zbl 1145.54026 · doi:10.1090/S0002-9939-07-09055-7 [8] Mizoguchi, N.; Takahashi, W., Fixed point theorems for multivalued mappings on complete metric spaces, Journal of Mathematical Analysis and Applications, 141, 1, 177-188 (1989) · Zbl 0688.54028 · doi:10.1016/0022-247X(89)90214-X [9] Dass, B. K.; Gupta, S., An extension of Banach contraction principle through rational expression, Indian Journal of Pure and Applied Mathematics, 6, 12, 1455-1458 (1975) · Zbl 0371.54074 [10] Jaggi, D. S., Some unique fixed point theorems, Indian Journal of Pure and Applied Mathematics, 8, 2, 223-230 (1977) · Zbl 0379.54015 [11] Lou, B., Fixed points for operators in a space of continuous functions and applications, Proceedings of the American Mathematical Society, 127, 8, 2259-2264 (1999) · Zbl 0918.47046 · doi:10.1090/S0002-9939-99-05211-9 [12] Bernfeld, S. R.; Lakshmikantham, V.; Reddy, Y. M., Fixed point theorems of operators with PPF dependence in Banach spaces, Applicable Analysis, 6, 4, 271-280 (1977) · Zbl 0375.47027 · doi:10.1080/00036817708839165 [13] Agarwal, R. P.; Sintunavarat, W.; Kumam, P., PPF dependent fixed point theorems for an \(α_c\)-admissible non-self mapping in the Razumikhin class, Fixed Point Theory and Applications, 2013, article 280 (2013) · Zbl 1342.47069 · doi:10.1186/1687-1812-2013-280 [14] Dhage, B. C., On some common fixed point theorems with PPF dependence in Banach spaces, Journal of Nonlinear Science and Its Applications, 5, 3, 220-232 (2012) · Zbl 1439.47036 [15] Dhage, B. C., Fixed point theorems with PPF dependence and functional differential equations, Fixed Point Theory, 13, 2, 439-452 (2012) · Zbl 1285.34060 [16] Drici, Z.; McRae, F. A.; Vasundhara Devi, J., Fixed-point theorems in partially ordered metric spaces for operators with PPF dependence, Nonlinear Analysis: Theory, Methods & Applications A, 67, 2, 641-647 (2007) · Zbl 1127.47049 · doi:10.1016/j.na.2006.06.022 [17] Drici, Z.; McRae, F. A.; Vasundhara Devi, J., Fixed point theorems for mixed monotone operators with PPF dependence, Nonlinear Analysis: Theory, Methods & Applications A, 69, 2, 632-636 (2008) · Zbl 1162.47042 · doi:10.1016/j.na.2007.05.044 [18] Sintunavarat, W.; Kumam, P., PPF dependent fixed point theorems for rational type contraction mappings in Banach spaces, Journal of Nonlinear Analysis and Optimization, 4, 2, 157-162 (2013) · Zbl 1397.47008 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.