×

Multiple solutions of second-order damped impulsive differential equations with mixed boundary conditions. (English) Zbl 1469.34046

Summary: We use variational methods to investigate the solutions of damped impulsive differential equations with mixed boundary conditions. The conditions for the multiplicity of solutions are established. The main results are also demonstrated with examples.

MSC:

34B37 Boundary value problems with impulses for ordinary differential equations

References:

[1] Benchohra, M.; Henderson, J.; Ntouyas, S., Impulsive Differential Equations and Inclusions. Impulsive Differential Equations and Inclusions, Contemporary Mathematics and Its Applications, 2, xiv+366 (2006), New York, NY, USA: Hindawi Publishing Corporation, New York, NY, USA · Zbl 1130.34003 · doi:10.1155/9789775945501
[2] Samoĭlenko, A. M.; Perestyuk, N. A., Impulsive Differential Equations, 14, x+462 (1995), River Edge, NJ, USA: World Scientific, River Edge, NJ, USA · Zbl 0837.34003 · doi:10.1142/9789812798664
[3] Agarwal, R. P.; Franco, D.; O’Regan, D., Singular boundary value problems for first and second order impulsive differential equations, Aequationes Mathematicae, 69, 1-2, 83-96 (2005) · Zbl 1073.34025 · doi:10.1007/s00010-004-2735-9
[4] Nieto, J. J., Impulsive resonance periodic problems of first order, Applied Mathematics Letters, 15, 4, 489-493 (2002) · Zbl 1022.34025 · doi:10.1016/S0893-9659(01)00163-X
[5] Yu, L.; Wang, S.; Wen, F.; Lai, K. K.; He, S., Designing a hybrid intelligent mining system for credit risk evaluation, Journal of Systems Science & Complexity, 21, 4, 527-539 (2008) · Zbl 1177.91139 · doi:10.1007/s11424-008-9133-7
[6] Luo, Z.; Shen, J., Stability and boundedness for impulsive functional differential equations with infinite delays, Nonlinear Analysis: Theory, Methods & Applications, 46, 4, 475-493 (2001) · Zbl 0997.34066 · doi:10.1016/S0362-546X(00)00123-1
[7] Choisy, M.; Guégan, J.-F.; Rohani, P., Dynamics of infectious diseases and pulse vaccination: teasing apart the embedded resonance effects, Physica D, 223, 1, 26-35 (2006) · Zbl 1110.34031 · doi:10.1016/j.physd.2006.08.006
[8] Jiao, J.; Yang, X.; Chen, L.; Cai, S., Effect of delayed response in growth on the dynamics of a chemostat model with impulsive input, Chaos, Solitons and Fractals, 42, 4, 2280-2287 (2009) · Zbl 1198.34134 · doi:10.1016/j.chaos.2009.03.132
[9] Huang, C.; Peng, C.; Chen, X.; Wen, F., Dynamics analysis of a class of delayed economic model, Abstract and Applied Analysis, 2013 (2013) · Zbl 1273.91314 · doi:10.1155/2013/962738
[10] Zeng, G.; Wang, F.; Nieto, J. J., Complexity of a delayed predator-prey model with impulsive harvest and Holling type II functional response, Advances in Complex Systems, 11, 1, 77-97 (2008) · Zbl 1168.34052 · doi:10.1142/S0219525908001519
[11] Dai, Z.; Wen, F., Another improved Wei-Yao-Liu nonlinear conjugate gradient method with sufficient descent property, Applied Mathematics and Computation, 218, 14, 7421-7430 (2012) · Zbl 1254.65074 · doi:10.1016/j.amc.2011.12.091
[12] Shen, J.; Wang, W., Impulsive boundary value problems with nonlinear boundary conditions, Nonlinear Analysis: Theory, Methods & Applications, 69, 11, 4055-4062 (2008) · Zbl 1171.34309 · doi:10.1016/j.na.2007.10.036
[13] Lee, E. K.; Lee, Y.-H., Multiple positive solutions of singular two point boundary value problems for second order impulsive differential equations, Applied Mathematics and Computation, 158, 3, 745-759 (2004) · Zbl 1069.34035 · doi:10.1016/j.amc.2003.10.013
[14] Zhao, Y.; Chen, H., Multiplicity of solutions to two-point boundary value problems for second-order impulsive differential equations, Applied Mathematics and Computation, 206, 2, 925-931 (2008) · Zbl 1165.34329 · doi:10.1016/j.amc.2008.10.009
[15] Wang, Z.-G.; Zhang, G.-W.; Wen, F.-H., Properties and characteristics of the Srivastava-Khairnar-More integral operator, Applied Mathematics and Computation, 218, 15, 7747-7758 (2012) · Zbl 1244.45006 · doi:10.1016/j.amc.2012.01.038
[16] Nieto, J. J.; O’Regan, D., Variational approach to impulsive differential equations, Nonlinear Analysis: Real World Applications, 10, 2, 680-690 (2009) · Zbl 1167.34318 · doi:10.1016/j.nonrwa.2007.10.022
[17] Yan, L.; Liu, J.; Luo, Z., Existence of solution for impulsive differential equations with nonlinear derivative dependence via variational methods, Abstract and Applied Analysis, 2013 (2013) · Zbl 1470.34047 · doi:10.1155/2013/908062
[18] Yan, L. Z.; Liu, J.; Luo, Z. G., Existence and multiplicity of solutions for second-order impulsive differential equations on the half-line, Advances in Difference Equations, 2013, article 293 (2013) · Zbl 1391.34030 · doi:10.1186/1687-1847-2013-293
[19] Zhang, Z.; Yuan, R., An application of variational methods to Dirichlet boundary value problem with impulses, Nonlinear Analysis: Real World Applications, 11, 1, 155-162 (2010) · Zbl 1191.34039 · doi:10.1016/j.nonrwa.2008.10.044
[20] Xie, J.; Luo, Z., Existence of three distinct solutions to boundary value problems of nonlinear differential equations with a \(p\)-Laplacian operator, Applied Mathematics Letters, 27, 101-106 (2014) · Zbl 1311.34043 · doi:10.1016/j.aml.2013.06.013
[21] Mawhin, J.; Willem, M., Critical Point Theory and Hamiltonian Systems, 74, xiv+277 (1989), New York, NY, USA: Springer, New York, NY, USA · Zbl 0676.58017
[22] Nieto, J. J., Variational formulation of a damped Dirichlet impulsive problem, Applied Mathematics Letters, 23, 8, 940-942 (2010) · Zbl 1197.34041 · doi:10.1016/j.aml.2010.04.015
[23] Xiao, J.; Nieto, J. J., Variational approach to some damped Dirichlet nonlinear impulsive differential equations, Journal of the Franklin Institute, 348, 2, 369-377 (2011) · Zbl 1228.34048 · doi:10.1016/j.jfranklin.2010.12.003
[24] Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations. Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65, viii+100 (1986), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 0609.58002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.