×

Multiplicity of solutions for Neumann problems for semilinear elliptic equations. (English) Zbl 1472.35191

Summary: Using the minimax methods in critical point theory, we study the multiplicity of solutions for a class of Neumann problems in the case near resonance. The results improve and generalize some of the corresponding existing results.

MSC:

35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35J25 Boundary value problems for second-order elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Li, C., The existence of infinitely many solutions of a class of nonlinear elliptic equations with Neumann boundary condition for both resonance and oscillation problems, Nonlinear Analysis: Theory, Methods & Applications, 54, 3, 431-443 (2003) · Zbl 1126.35320 · doi:10.1016/S0362-546X(03)00100-7
[2] Qian, A., Existence of infinitely many nodal solutions for a superlinear Neumann boundary value problem, Boundary Value Problems, 2005, 3, 329-335 (2005) · Zbl 1220.35052
[3] Motreanu, D.; O’Regan, D.; Papageorgiou, N. S., A unified treatment using critical point methods of the existence of multiple solutions for superlinear and sublinear Neumann problems, Communications on Pure and Applied Analysis, 10, 6, 1791-1816 (2011) · Zbl 1234.35080 · doi:10.3934/cpaa.2011.10.1791
[4] Tang, C.-L.; Wu, X.-P., Existence and multiplicity for solutions of Neumann problem for semilinear elliptic equations, Journal of Mathematical Analysis and Applications, 288, 2, 660-670 (2003) · Zbl 1087.35042 · doi:10.1016/j.jmaa.2003.09.034
[5] Motreanu, D.; Motreanu, V. V.; Papageorgiou, N. S., Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems (2014), New York, NY, USA: Springer, New York, NY, USA · Zbl 1292.47001
[6] Gasiński, L.; Papageorgiou, N. S., Multiplicity of solutions for Neumann problems with an indefinite and unbounded potential, Communications on Pure and Applied Analysis, 12, 5, 1985-1999 (2013) · Zbl 1268.35064 · doi:10.3934/cpaa.2013.12.1985
[7] Papageorgiou, N. S.; Rădulescu, V. D., Semilinear Neumann problems with indefinite and unbounded potential and crossing nonlinearity, Recent trends in Nonlinear Partial Differential Equations. II. Stationary Problems. Recent trends in Nonlinear Partial Differential Equations. II. Stationary Problems, Contemporary Mathematics, 595, 293-315 (2013), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 1301.35052 · doi:10.1090/conm/595/11801
[8] Mawhin, J.; Schmitt, K., Nonlinear eigenvalue problems with the parameter near resonance, Annales Polonici Mathematici, 51, 241-248 (1990) · Zbl 0724.34025
[9] Ma, T. F.; Ramos, M.; Sanchez, L., Multiple solutions for a class of nonlinear boundary value problems near resonance: a variational approach, Nonlinear Analysis: Theory, Methods & Applications, 30, 6, 3301-3311 (1997) · Zbl 0887.35053 · doi:10.1016/S0362-546X(96)00380-X
[10] Ma, T. F.; Pelicer, M. L., Perturbations near resonance for the \(p\)-laplacian in \(R^N\), Abstract and Applied Analysis, 7, 6, 323-334 (2002) · Zbl 1065.35116 · doi:10.1155/S1085337502203073
[11] Ma, T. F.; Sanchez, L., Three solutions of a quasilinear elliptic problem near resonance, Mathematica Slovaca, 47, 4, 451-457 (1997) · Zbl 0958.35052
[12] Ou, Z.-Q.; Tang, C.-L., Existence and multiplicity results for some elliptic systems at resonance, Nonlinear Analysis: Theory, Methods & Applications, 71, 7-8, 2660-2666 (2009) · Zbl 1172.35382 · doi:10.1016/j.na.2009.01.106
[13] de Paiva, F. O.; Massa, E., Semilinear elliptic problems near resonance with a nonprincipal eigenvalue, Journal of Mathematical Analysis and Applications, 342, 1, 638-650 (2008) · Zbl 1149.35044 · doi:10.1016/j.jmaa.2007.12.053
[14] Suo, H.-M.; Tang, C.-L., Degenerate semilinear elliptic problems near resonance with a nonprincipal eigenvalue, Bulletin of the Korean Mathematical Society, 49, 4, 669-684 (2012) · Zbl 1259.35106 · doi:10.4134/BKMS.2012.49.4.669
[15] Evance, L. C., Partial Differential Equations, Graduate Studies in Mathematics, 19 (1998), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 0902.35002
[16] Marino, A.; Micheletti, A. M.; Pistoia, A., A nonsymmetric asymptotically linear elliptic problem, Topological Methods in Nonlinear Analysis, 4, 2, 289-339 (1994) · Zbl 0844.35035
[17] Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations. Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65 (1986), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 0609.58002
[18] Tang, C.-L.; Wu, X.-P., Periodic solutions for second order systems with not uniformly coercive potential, Journal of Mathematical Analysis and Applications, 259, 2, 386-397 (2001) · Zbl 0999.34039 · doi:10.1006/jmaa.2000.7401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.