×

The hybrid steepest descent method for split variational inclusion and constrained convex minimization problems. (English) Zbl 1472.47070

Summary: We introduced an implicit and an explicit iteration method based on the hybrid steepest descent method for finding a common element of the set of solutions of a constrained convex minimization problem and the set of solutions of a split variational inclusion problem.

MSC:

47J25 Iterative procedures involving nonlinear operators
47J22 Variational and other types of inclusions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Censor, Y.; Elfving, T., A multiprojection algorithm using Bregman projections in a product space, Numerical Algorithms, 8, 2-4, 221-239 (1994) · Zbl 0828.65065 · doi:10.1007/BF02142692
[2] Byrne, C., Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, 18, 2, 441-453 (2002) · Zbl 0996.65048 · doi:10.1088/0266-5611/18/2/310
[3] Censor, Y.; Bortfeld, T.; Martin, B.; Trofimov, A., A unified approach for inversion problems in intensity-modulated radiation therapy, Physics in Medicine and Biology, 51, 10, 2353-2365 (2006) · doi:10.1088/0031-9155/51/10/001
[4] Eicke, B., Iteration methods for convexly constrained ill-posed problems in Hilbert space, Numerical Functional Analysis and Optimization, 13, 5-6, 413-429 (1992) · Zbl 0769.65026 · doi:10.1080/01630569208816489
[5] Xu, H.-K., Averaged mappings and the gradient-projection algorithm, Journal of Optimization Theory and Applications, 150, 2, 360-378 (2011) · Zbl 1233.90280 · doi:10.1007/s10957-011-9837-z
[6] Su, M.; Xu, H., Remarks on the gradient-projection algorithm, Journal of Nonlinear Analysis and Optimization, 1, 1, 35-43 (2010) · Zbl 1413.90272
[7] Xu, H. K., An iterative approach to quadratic optimization, Journal of Optimization Theory and Applications, 116, 3, 659-678 (2003) · Zbl 1043.90063 · doi:10.1023/A:1023073621589
[8] Lions, J.-L., Quelques Methodes de Resolution des Problemes aux Limites non Lineaires (1969), Paris, France: Dunod, Paris, France · Zbl 0189.40603
[9] Yamada, I.; Butnariu, D.; Censor, Y.; Reich, S., The hybrid steepest-descent mathod for variational inequality problems over the intersection of the fixed-point sets of nonexpansive mappings, Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, 473-504 (2001), Amsterdam, The Netherlands: North-Holland, Amsterdam, The Netherlands · Zbl 1013.49005
[10] Tian, M., A general iterative algorithm for nonexpansive mappings in Hilbert spaces, Nonlinear Analysis: Theory, Methods & Applications, 73, 3, 689-694 (2010) · Zbl 1192.47064 · doi:10.1016/j.na.2010.03.058
[11] Moudafi, A., Split monotone variational inclusions, Journal of Optimization Theory and Applications, 150, 2, 275-283 (2011) · Zbl 1231.90358 · doi:10.1007/s10957-011-9814-6
[12] Censor, Y.; Gibali, A.; Reich, S., Algorithms for the split variational inequality problem, Numerical Algorithms, 59, 2, 301-323 (2012) · Zbl 1239.65041 · doi:10.1007/s11075-011-9490-5
[13] Combettes, P. L.; Hawkes, P., The convex feasible problem in image recovery, Advanced in Image and Electronphysics, 95, 155-270 (1996), New York, NY, USA: Academic Press, New York, NY, USA
[14] Byrne, C.; Censor, Y.; Gibali, A.; Reich, S., The split common null point problem, Journal of Nonlinear and Convex Analysis, 13, 4, 759-775 (2012) · Zbl 1262.47073
[15] Kazmi, K. R.; Rizvi, S. H., An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping, Optimization Letters, 8, 3, 1113-1124 (2014) · Zbl 1320.90104 · doi:10.1007/s11590-013-0629-2
[16] Suzuki, T., Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory and Applications, 2005, 1, 103-123 (2005) · Zbl 1123.47308 · doi:10.1155/FPTA.2005.103
[17] Shimoji, K.; Takahashi, W., Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese Journal of Mathematics, 5, 2, 387-404 (2001) · Zbl 0993.47037
[18] Wang, S., A general iterative method for obtaining an infinite family of strictly pseudo-contractive mappings in Hilbert spaces, Applied Mathematics Letters of Rapid Publication, 24, 6, 901-907 (2011) · Zbl 1296.47097 · doi:10.1016/j.aml.2010.12.048
[19] Duan, P., General iterative methods for system of equilibrium problems and constrained convex minimization problem in Hilbert spaces, Journal of Applied Mathematics, 2013 (2013) · Zbl 1397.47015 · doi:10.1155/2013/957363
[20] Byrne, C., A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems, 20, 1, 103-120 (2004) · Zbl 1051.65067 · doi:10.1088/0266-5611/20/1/006
[21] Combettes, P. L., Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization, 53, 5-6, 475-504 (2004) · Zbl 1153.47305 · doi:10.1080/02331930412331327157
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.