×

Bifurcation analysis and spatiotemporal patterns of nonlinear oscillations in a ring lattice of identical neurons with delayed coupling. (English) Zbl 1469.34094

Summary: We investigate the dynamics of a delayed neural network model consisting of \(n\) identical neurons. We first analyze stability of the zero solution and then study the effect of time delay on the dynamics of the system. We also investigate the steady state bifurcations and their stability. The direction and stability of the Hopf bifurcation and the pitchfork bifurcation are analyzed by using the derived normal forms on center manifolds. Then, the spatiotemporal patterns of bifurcating periodic solutions are investigated by using the symmetric bifurcation theory, Lie group theory and \(S^1\)-equivariant degree theory. Finally, two neural network models with four or seven neurons are used to verify our theoretical results.

MSC:

34K18 Bifurcation theory of functional-differential equations
34A33 Ordinary lattice differential equations
34C40 Ordinary differential equations and systems on manifolds
92C20 Neural biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lisman, J., The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme, Hippocampus, 15, 7, 913-922 (2005) · doi:10.1002/hipo.20121
[2] Csicsvari, J.; Jamieson, B.; Wise, K. D.; Buzsáki, G., Mechanisms of gamma oscillations in the hippocampus of the behaving rat, Neuron, 37, 2, 311-322 (2003) · doi:10.1016/S0896-6273(02)01169-8
[3] Kandel, E. R.; Schwartz, J. H.; Jessell, T. M., Principles of Neural Science (2000), New York, NY, USA: McGraw-Hill, New York, NY, USA
[4] Venetianer, P. L.; Roska, T., Image compression by cellular neural networks, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 45, 3, 205-215 (1998) · doi:10.1109/81.662694
[5] Campbell, S. A.; Bélair, J.; Ohira, T.; Milton, J., Limit cycles, tori, and complex dynamics in a second-order differential equation with delayed negative feedback, Journal of Dynamics and Differential Equations, 7, 1, 213-236 (1995) · Zbl 0816.34048 · doi:10.1007/BF02218819
[6] Velarde, M. G.; Nekorkin, V. I.; Makarov, V. A.; Makarenko, V. I.; Llinás, R. R., Clustering behavior in a three-layer system mimicking olivo-cerebellar dynamics, Neural Networks, 17, 2, 191-203 (2004) · Zbl 1044.92020 · doi:10.1016/j.neunet.2003.07.010
[7] Jakimovski, B.; Meyer, B.; Maehle, E., Firefly flashing synchronization as inspiration for selfsynchronization of walking robot gait patterns using a decentralized robot control architecture, Architecture of Computing Systems—ARCS 2010. Architecture of Computing Systems—ARCS 2010, Lecture Notes in Computer Science, 5974, 61-72 (2010)
[8] Ijspeert, A. J., Central pattern generators for locomotion control in animals and robots: a review, Neural Networks, 21, 4, 642-653 (2008) · doi:10.1016/j.neunet.2008.03.014
[9] Makarov, V. A.; Del Rio, E.; Bedia, M. G.; Velarde, M. G.; Ebeling, W., Central pattern generator incorporating the actuator dynamics for a hexapod robot, International Journal of Applied Mathematics and Computer Science, 3, 2, 97-102 (2007)
[10] Marcus, C. M.; Westervelt, R. M., Stability of analog neural networks with delay, Physical Review A, 39, 1, 347-359 (1989) · doi:10.1103/PhysRevA.39.347
[11] Baldi, P.; Atiya, A. F., How delays affect neural dynamics and learning, IEEE Transactions on Neural Networks, 5, 4, 612-621 (1994) · doi:10.1109/72.298231
[12] Wu, J., Introduction to Neural Dynamics and Signal Transmission Delay. Introduction to Neural Dynamics and Signal Transmission Delay, de Gruyter Series in Nonlinear Analysis and Applications, 6 (2001), Berlin, Germany: Walter de Gruyter, Berlin, Germany · Zbl 0977.34069 · doi:10.1515/9783110879971
[13] Civalleri, P. P.; Gilli, M.; Pandolfi, L., On stability of cellular neural networks with delay, IEEE Transactions on Circuits and Systems. I. Fundamental Theory and Applications, 40, 3, 157-165 (1993) · Zbl 0792.68115 · doi:10.1109/81.222796
[14] Cao, J.; Xiao, M., Stability and Hopf bifurcation in a simplified BAM neural network with two time delays, IEEE Transactions on Neural Networks, 18, 2, 416-430 (2007) · doi:10.1109/TNN.2006.886358
[15] Song, Y.; Han, M.; Wei, J., Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays, Physica D: Nonlinear Phenomena, 200, 3-4, 185-204 (2005) · Zbl 1062.34079 · doi:10.1016/j.physd.2004.10.010
[16] Xiao, M.; Cao, J., Genetic oscillation deduced from Hopf bifurcation in a genetic regulatory network with delays, Mathematical Biosciences, 215, 1, 55-63 (2008) · Zbl 1156.92031 · doi:10.1016/j.mbs.2008.05.004
[17] Xiao, M.; Zheng, W.; Cao, J., Bifurcation and control in a neural network with small and large delays, Neural Networks, 44, 132-142 (2013) · Zbl 1296.93065
[18] Xiao, M.; Zheng, W.; Cao, J., Hopf bifurcation of an -neuron bidirectional associative memory neural network model with delays, IEEE Transactions on Neural Networks and Learning Systems, 24, 118-132 (2013)
[19] Golubitsky, M.; Stewart, I.; Schaeffer, D. G., Singularities and groups in bifurcation theory. Vol. II. Singularities and groups in bifurcation theory. Vol. II, Applied Mathematical Sciences, 69 (1988), New York, NY, USA: Springer, New York, NY, USA · Zbl 0691.58003 · doi:10.1007/978-1-4612-4574-2
[20] Krawcewicz, W.; Vivi, P.; Wu, J., Computation formulae of an equivariant degree with applications to symmetric bifurcations, Nonlinear Studies, 4, 1, 89-119 (1997) · Zbl 0915.58022
[21] Krawcewicz, W.; Wu, J., Theory and applications of Hopf bifurcations in symmetric functional-differential equations, Nonlinear Analysis: Theory, Methods & Applications, 35, 7, 845-870 (1999) · Zbl 0917.58027 · doi:10.1016/S0362-546X(97)00711-6
[22] Wu, J., Symmetric functional-differential equations and neural networks with memory, Transactions of the American Mathematical Society, 350, 12, 4799-4838 (1998) · Zbl 0905.34034 · doi:10.1090/S0002-9947-98-02083-2
[23] Campbell, S. A.; Ncube, I.; Wu, J., Multistability and stable asynchronous periodic oscillations in a multiple-delayed neural system, Physica D: Nonlinear Phenomena, 214, 2, 101-119 (2006) · Zbl 1100.34054 · doi:10.1016/j.physd.2005.12.008
[24] Campbell, S. A.; Yuan, Y.; Bungay, S. D., Equivariant Hopf bifurcation in a ring of identical cells with delayed coupling, Nonlinearity, 18, 6, 2827-2846 (2005) · Zbl 1094.34049 · doi:10.1088/0951-7715/18/6/022
[25] Fan, D.; Wei, J., Equivariant Hopf bifurcation in a ring of identical cells with delay, Mathematical Problems in Engineering, 2009 (2009) · Zbl 1182.37035 · doi:10.1155/2009/950251
[26] Guo, S.; Huang, L., Hopf bifurcating periodic orbits in a ring of neurons with delays, Physica D: Nonlinear Phenomena, 183, 1-2, 19-44 (2003) · Zbl 1041.68079 · doi:10.1016/S0167-2789(03)00159-3
[27] Guo, S.; Huang, L., Stability of nonlinear waves in a ring of neurons with delays, Journal of Differential Equations, 236, 2, 343-374 (2007) · Zbl 1132.34048 · doi:10.1016/j.jde.2007.01.027
[28] Huang, L.; Wu, J., Nonlinear waves in networks of neurons with delayed feedback: pattern formation and continuation, SIAM Journal on Mathematical Analysis, 34, 4, 836-860 (2003) · Zbl 1038.34076 · doi:10.1137/S0036141001386519
[29] Peng, M., Bifurcation and stability analysis of nonlinear waves in \(\mathbb{D}_n\) symmetric delay differential systems, Journal of Differential Equations, 232, 2, 521-543 (2007) · Zbl 1118.34067 · doi:10.1016/j.jde.2006.09.010
[30] Song, Y.; Tadé, M. O.; Zhang, T., Bifurcation analysis and spatio-temporal patterns of nonlinear oscillations in a delayed neural network with unidirectional coupling, Nonlinearity, 22, 5, 975-1001 (2009) · Zbl 1171.34058 · doi:10.1088/0951-7715/22/5/004
[31] Song, Y.; Zhang, T.; Tadé, M. O., Stability switches, Hopf bifurcations, and spatio-temporal patterns in a delayed neural model with bidirectional coupling, Journal of Nonlinear Science, 19, 6, 597-632 (2009) · Zbl 1186.34120 · doi:10.1007/s00332-009-9046-1
[32] Song, Y.; Xu, J., Inphase and antiphase synchronization in a delay-coupled system with applications to a delay-coupled FitzHugh-Nagumo system, IEEE Transactions on Neural Networks and Learning Systems, 23, 1659-1670 (2012)
[33] Shayer, L. P.; Campbell, S. A., Stability, bifurcation, and multistability in a system of two coupled neurons with multiple time delays, SIAM Journal on Applied Mathematics, 61, 2, 673-700 (2000) · Zbl 0992.92013 · doi:10.1137/S0036139998344015
[34] Wu, J.; Faria, T.; Huang, Y. S., Synchronization and stable phase-locking in a network of neurons with memory, Mathematical and Computer Modelling, 30, 1-2, 117-138 (1999) · Zbl 1043.92500 · doi:10.1016/S0895-7177(99)00120-X
[35] Yuan, Y.; Campbell, S. A., Stability and synchronization of a ring of identical cells with delayed coupling, Journal of Dynamics and Differential Equations, 16, 709-744 (2004) · Zbl 1071.34079
[36] Wei, J.; Velarde, M. G.; Makarov, V. A., Oscillatory phenomena and stability of periodic solutions in a simple neural network with delay, Nonlinear Phenomena in Complex Systems, 5, 4, 407-417 (2002)
[37] Wei, J.; Velarde, M. G., Bifurcation analysis and existence of periodic solutions in a simple neural network with delays, Chaos, 14, 3, 940-953 (2004) · Zbl 1080.34064 · doi:10.1063/1.1768111
[38] Wei, J.; Li, M. Y., Global existence of periodic solutions in a tri-neuron network model with delays, Physica D: Nonlinear Phenomena, 198, 1-2, 106-119 (2004) · Zbl 1062.34077 · doi:10.1016/j.physd.2004.08.023
[39] Xiuling, L.; Junjie, W., Stability and bifurcation analysis on a delayed neural network model, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 15, 9, 2883-2893 (2005) · Zbl 1093.92008 · doi:10.1142/S0218127405013757
[40] Guo, S., Spatio-temporal patterns of nonlinear oscillations in an excitatory ring network with delay, Nonlinearity, 18, 5, 2391-2407 (2005) · Zbl 1093.34036 · doi:10.1088/0951-7715/18/5/027
[41] Gopalsamy, K.; Leung, I. K. C.; Liu, P., Global Hopf-bifurcation in a neural netlet, Applied Mathematics and Computation, 94, 2-3, 171-192 (1998) · Zbl 0946.34065 · doi:10.1016/S0096-3003(97)10087-X
[42] Han, Y.; Song, Y., Stability and Hopf bifurcation in a three-neuron unidirectional ring with distributed delays, Nonlinear Dynamics, 69, 1-2, 357-370 (2012) · Zbl 1276.92008 · doi:10.1007/s11071-011-0269-y
[43] Song, Y.; Han, Y.; Peng, Y., Stability and Hopf bifurcation in an unidirectional ring of n neurons with distributed delays, Neuroncomputing, 122, 442-452 (2013)
[44] Mallet-Paret, J.; Nussbaum, R. D., Global continuation and asymptotic behaviour for periodic solutions of a differential-delay equation, Annali di Matematica Pura ed Applicata, 145, 33-128 (1986) · Zbl 0617.34071 · doi:10.1007/BF01790539
[45] Krisztin, T.; Walther, H.-O.; Wu, J., Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback. Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback, Fields Institute Monographs, 11 (1999), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 1004.34002
[46] Krisztin, T.; Walther, H.-O., Unique periodic orbits for delayed positive feedback and the global attractor, Journal of Dynamics and Differential Equations, 13, 1, 1-57 (2001) · Zbl 1008.34061 · doi:10.1023/A:1009091930589
[47] Hale, J. K.; Verduyn Lunel, S. M., Introduction to Functional-Differential Equations. Introduction to Functional-Differential Equations, Applied Mathematical Sciences, 99, x+447 (1993), New York, NY, USA: Springer, New York, NY, USA · Zbl 0787.34002
[48] Faria, T.; Magalhães, L. T., Normal forms for retarded functional-differential equations with parameters and applications to Hopf bifurcation, Journal of Differential Equations, 122, 2, 181-200 (1995) · Zbl 0836.34068 · doi:10.1006/jdeq.1995.1144
[49] Faria, T.; Magalhães, L. T., Normal forms for retarded functional-differential equations and applications to Bogdanov-Takens singularity, Journal of Differential Equations, 122, 2, 201-224 (1995) · Zbl 0836.34069 · doi:10.1006/jdeq.1995.1145
[50] Chow, S. N.; Hale, J. K., Methods of Bifurcation Theory. Methods of Bifurcation Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], 251 (1982), New York, NY, USA: Springer, New York, NY, USA · Zbl 0487.47039
[51] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos. Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, 2 (2003), New York, NY, USA: Springer, New York, NY, USA · Zbl 1027.37002
[52] Hale, J. K.; Tanaka, S. M., Square and pulse waves with two delays, Journal of Dynamics and Differential Equations, 12, 1, 1-30 (2000) · Zbl 0949.34062 · doi:10.1023/A:1009052718531
[53] Huang, W., Stability of square wave periodic solution for singularly perturbed delay differential equations, Journal of Differential Equations, 168, 2, 239-269 (2000) · Zbl 0969.00109 · doi:10.1006/jdeq.2000.3886
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.