Yang, Hongwei; Wang, Xiangrong; Yin, Baoshu On differential equations derived from the pseudospherical surfaces. (English) Zbl 1472.35343 Abstr. Appl. Anal. 2014, Article ID 381717, 9 p. (2014). Summary: We construct two metric tensor fields; by means of these metric tensor fields, sinh-Gordon equation and elliptic sinh-Gordon equation are obtained, which describe pseudospherical surfaces of constant negative Riemann curvature scalar \(\sigma\) = \(-\)2, \(\sigma\) = \(-\)1, respectively. By employing the Bäcklund transformation, nonlinear superposition formulas of sinh-Gordon equation and elliptic sinh-Gordon equation are derived; various new exact solutions of the equations are obtained. MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems 35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian 35L71 Second-order semilinear hyperbolic equations 15A69 Multilinear algebra, tensor calculus Keywords:sinh-Gordon equation; elliptic sinh-Gordon equation; Bäcklund transformation; tensor fields PDF BibTeX XML Cite \textit{H. Yang} et al., Abstr. Appl. Anal. 2014, Article ID 381717, 9 p. (2014; Zbl 1472.35343) Full Text: DOI References: [1] Infeld, E.; Rowlands, G., Nonlinear Waves, Solitons and Chaos (2000), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0994.76001 [2] Dold, A.; Eckmann, B., Bäcklund Transformations. Bäcklund Transformations, Lecture Note in Mathematics (1974), New York, NY, USA: Springer, New York, NY, USA [3] Zhang, Y. F.; Tam, H. W., Discussion on integrable properties for higher-dimensional variable-coefficient nonlinear partial differential equations, Journal of Mathematical Physics, 54 (2013) [4] Xia, T. C.; Zhang, H. Q.; Yan, Z. Y., New explicit and exact travelling wave solutions for a class of nonlinear evolution equations, Applied Mathematics and Mechanics, 22, 7, 788-793 (2001) · Zbl 0982.35101 [5] Scott, A. C., Propagation of magnetic flux on a long Josephson tunnel junction, Il Nuovo Cimento B Series 10, 69, 2, 241-261 (1970) [6] Yang, H.-W.; Yin, B.-S.; Yang, D.-Z.; Xu, Z.-H., Forced solitary Rossby waves under the influence of slowly varying topography with time, Chinese Physics B, 20, 12 (2011) [7] Yang, H. W.; Yin, B. S.; Shi, Y. L., Forced dissipative Boussinesq equation for solitary waves excited by unstable topography, Nonlinear Dynamics, 70, 2, 1389-1396 (2012) [8] Xu, Z. H.; Yin, B. S.; Hou, Y. J., Variability of internal tides and near-inertial waves on the continental slope of the northwestern South China Sea, Journal of Geophysical Research, 118, 197-211 (2013) [9] Xu, Z.; Yin, B.; Hou, Y.; Fan, Z.; Liu, A. K., A study of internal solitary waves observed on the continental shelf in the northwestern South China Sea, Acta Oceanologica Sinica, 29, 3, 18-25 (2010) [10] Drazin, P. G., Solitons. Solitons, London Mathematical Society Lecture Note Series, 85 (1983), London, UK: Cambridge University Press, London, UK [11] Lamb,, G. L., Analytical descriptions of ultrashort optical pulse propagation in a resonant medium, Reviews of Modern Physics, 43, 99-124 (1971) [12] Feverati, G.; Ravanini, F.; Takács, G., Non-linear integral equation and finite volume spectrum of sine-Gordon theory, Nuclear Physics B, 540, 3, 543-586 (1999) · Zbl 0942.81040 [13] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering. Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, 149 (1991), New York, NY, USA: Cambridge University Press, New York, NY, USA · Zbl 0762.35001 [14] Khater, A. H.; Callebaut, D. K.; Sayed, S. M., Conservation laws for some nonlinear evolution equations which describe pseudo-spherical surfaces, Journal of Geometry and Physics, 51, 3, 332-352 (2004) · Zbl 1069.37058 [15] Ma, W.-X., Variational identities and applications to Hamiltonian structures of soliton equations, Nonlinear Analysis: Theory, Methods & Applications, 71, 12, e1716-e1726 (2009) · Zbl 1238.37020 [16] Zhang, Y.; Han, Z.; Tam, H.-W., An integrable hierarchy and Darboux transformations, bilinear Bäcklund transformations of a reduced equation, Applied Mathematics and Computation, 219, 11, 5837-5848 (2013) · Zbl 1338.37098 [17] Xia, T.; Chen, X.; Chen, D., Darboux transformation and soliton-like solutions of nonlinear Schrödinger equations, Chaos, Solitons & Fractals, 26, 3, 889-896 (2005) · Zbl 1078.35118 [18] Ma, W. X., Exact solutions to Tu system through Painlevé analysis, Journal of Fudan University. Natural Science, 33, 3, 319-326 (1994) · Zbl 0816.35124 [19] Reyes, E. G., Pseudo-spherical surfaces and integrability of evolution equations, Journal of Differential Equations, 147, 1, 195-230 (1998) · Zbl 0916.35047 [20] Gharib, G. M., Surfaces of a constant negative curvature, International Journal of Differential Equations, 2012 (2012) · Zbl 1298.37067 [21] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering, 149 (1991), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0762.35001 [22] Eleuch, H.; Rostovtsev, Y. V., Analytical solution to sine-Gordon equation, Journal of Mathematical Physics, 51 (2010) · Zbl 1309.35132 [23] Matsuno, Y., A direct method for solving the generalized sine-Gordon equation, Journal of Physics A: Mathematical and Theoretical, 43 (2010) · Zbl 1185.35236 [24] Aktosun, T.; Demontis, F.; van der Mee, C., Exact solutions to the sine-Gordon equation, Journal of Mathematical Physics, 51 (2010) · Zbl 1314.35158 [25] Hariharan, G., Haar wavelet method for solving the Klein-Gordon and the Sine-Gordon equations, International Journal of Nonlinear Science, 11, 2, 180-189 (2011) · Zbl 1235.35246 [26] Kamran, N.; Tenenblat, K., On differential equations describing pseudo-spherical surfaces, Journal of Differential Equations, 115, 1, 75-98 (1995) · Zbl 0815.35036 [27] Klein, J. J., Geometrical interpretation of the solutions of the sine-Gordon equation, Journal of Mathematical Physics, 26, 9, 2181-2185 (1985) [28] Steeb, W.-H., Continuous Symmetries, Lie Algebras, Differential Equations and Computer Algebra (1996), River Edge, NJ, USA: World Scientific, River Edge, NJ, USA · Zbl 0916.34001 [29] Perring, J. K.; Skyrme, T. H. R., A model unified field equation, Nuclear Physics B, 31, 550-555 (1962) · Zbl 0106.20105 [30] Wazwaz, A. M., Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE method, Computers & Mathematics with Applications, 50, 10-12, 1685-1696 (2005) · Zbl 1089.35534 [31] Tang, S.; Huang, W., Bifurcations of travelling wave solutions for the generalized double sinh-Gordon equation, Applied Mathematics and Computation, 189, 2, 1774-1781 (2007) · Zbl 1124.35077 [32] Dodd, R. K.; Bullough, R. K., Bäcklund transformations for the sine-Gordon equations, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 351, 1667, 499-523 (1976) · Zbl 0353.35063 [33] Rogers, C.; Shadwick, W. F., Bäcklund Transformations and Their Applications, 161 (1982), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0492.58002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.