Liao, Fang-fang; Sun, Juntao Variational approach to impulsive problems: a survey of recent results. (English) Zbl 1469.34031 Abstr. Appl. Anal. 2014, Article ID 382970, 11 p. (2014). Summary: We present a survey on the existence of nontrivial solutions to impulsive differential equations by using variational methods, including solutions to boundary value problems, periodic solutions, and homoclinic solutions. MSC: 34A37 Ordinary differential equations with impulses 34-02 Research exposition (monographs, survey articles) pertaining to ordinary differential equations PDF BibTeX XML Cite \textit{F.-f. Liao} and \textit{J. Sun}, Abstr. Appl. Anal. 2014, Article ID 382970, 11 p. (2014; Zbl 1469.34031) Full Text: DOI References: [1] Carter, T. E., Optimal impulsive space trajectories based on linear equations, Journal of Optimization Theory and Applications, 70, 2, 277-297 (1991) · Zbl 0732.49025 [2] Carter, T. E., Necessary and sufficient conditions for optimal impulsive rendezvous with linear equations of motion, Dynamics and Control, 10, 3, 219-227 (2000) · Zbl 0980.93058 [3] Chu, J.; Nieto, J. J., Impulsive periodic solutions of first-order singular differential equations, Bulletin of the London Mathematical Society, 40, 1, 143-150 (2008) · Zbl 1144.34016 [4] Li, W.; Huo, H., Global attractivity of positive periodic solutions for an impulsive delay periodic model of respiratory dynamics, Journal of Computational and Applied Mathematics, 174, 2, 227-238 (2005) · Zbl 1070.34089 [5] Li, C.; Liao, X.; Yang, X.; Huang, T., Impulsive stabilization and synchronization of a class of chaotic delay systems, Chaos, 15 (2005) · Zbl 1144.37371 [6] Prado, A. F. B. A., Bi-impulsive control to build a satellite constellation, Nonlinear Dynamics and Systems Theory, 5, 2, 169-175 (2005) · Zbl 1128.70015 [7] Agarwal, R. P.; Franco, D.; O’Regan, D., Singular boundary value problems for first and second order impulsive differential equations, Aequationes Mathematicae, 69, 1-2, 83-96 (2005) · Zbl 1073.34025 [8] Ahmad, B.; Nieto, J. J., Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions, Nonlinear Analysis: Theory, Methods & Applications, 69, 10, 3291-3298 (2008) · Zbl 1158.34049 [9] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S., Theory of Impulsive Differential Equations, 6 (1989), Singapore: World Scientific, Singapore · Zbl 0719.34002 [10] Li, J.; Nieto, J. J.; Shen, J., Impulsive periodic boundary value problems of first-order differential equations, Journal of Mathematical Analysis and Applications, 325, 1, 226-236 (2007) · Zbl 1110.34019 [11] Nieto, J. J., Basic theory for nonresonance impulsive periodic problems of first order, Proceedings of the American Mathematical Society, 125, 2599-2604 (1997) · Zbl 0884.34011 [12] Samoilenko, A. M.; Perestyuk, N. A., Impulsive Differential Equations, 14 (1995), Singapore: World Scientific, Singapore · Zbl 0837.34003 [13] Fang, H.; Duan, H., Existence of nontrivial weak homoclinic orbits for second-order impulsive differential equations, Boundary Value Problems, 2012, article 138 (2012) · Zbl 1283.34024 [14] Han, X.; Zhang, H., Periodic and homoclinic solutions generated by impulses for asymptotically linear and sublinear Hamiltonian system, Journal of Computational and Applied Mathematics, 235, 5, 1531-1541 (2011) · Zbl 1211.34008 [15] Nieto, J. J.; O’Regan, D., Variational approach to impulsive differential equations, Nonlinear Analysis: Real World Applications, 10, 2, 680-690 (2009) · Zbl 1167.34318 [16] Sun, J.; Chen, H.; Nieto, J. J.; Otero-Novoa, M., The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects, Nonlinear Analysis: Theory, Methods & Applications, 72, 12, 4575-4586 (2010) · Zbl 1198.34036 [17] Sun, J.; Chu, J., A suffcient and necessary condition on T-periodic solution for a singular problem with impulses, Electronic Journal of Differential Equations, 94, 1-10 (2014) [18] Sun, J.; Chu, J.; Chen, H., Periodic solution generated by impulses for singular differential equations, Journal of Mathematical Analysis and Applications, 404, 2, 562-569 (2013) · Zbl 1304.34076 [19] Xie, J.; Luo, Z.; Chen, G., Homoclinic solutions for a class of the second-order impulsive Hamiltonian systems, Abstract and Applied Analysis, 2013 (2013) · Zbl 1296.34121 [20] Zhang, H.; Li, Z., Periodic and homoclinic solutions generated by impulses, Nonlinear Analysis: Real World Applications, 12, 1, 39-51 (2011) · Zbl 1225.34019 [21] Zhang, Z.; Yuan, R., An application of variational methods to Dirichlet boundary value problem with impulses, Nonlinear Analysis: Real World Applications, 11, 1, 155-162 (2010) · Zbl 1191.34039 [22] Zhou, J.; Li, Y., Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects, Nonlinear Analysis: Theory, Methods & Applications, 71, 7-8, 2856-2865 (2009) · Zbl 1175.34035 [23] Agarwal, R. P.; Bhaskar, T. G.; Perera, K., Some results for impulsive problems via Morse theory, Journal of Mathematical Analysis and Applications, 409, 2, 752-759 (2014) · Zbl 1306.34042 [24] Chen, H.; Sun, J., An application of variational method to second-order impulsive differential equation on the half-line, Applied Mathematics and Computation, 217, 5, 1863-1869 (2010) · Zbl 1213.34020 [25] Sun, J.; Chen, H., Variational method to the impulsive equation with Neumann boundary conditions, Boundary Value Problems, 2009 (2009) · Zbl 1184.34039 [26] Sun, J.; Chen, H., Multiplicity of solutions for a class of impulsive differential equations with Dirichlet boundary conditions via variant fountain theorems, Nonlinear Analysis: Real World Applications, 11, 5, 4062-4071 (2010) · Zbl 1208.34031 [27] Tian, Y.; Ge, W., Applications of variational methods to boundary-value problem for impulsive differential equations, Proceedings of the Edinburgh Mathematical Society, 51, 2, 509-527 (2008) · Zbl 1163.34015 [28] Tian, Y.; Ge, W., Variational methods to Sturm-Liouville boundary value problem for impulsive differential equations, Nonlinear Analysis: Theory, Methods & Applications, 72, 1, 277-287 (2010) · Zbl 1191.34038 [29] Tian, Y.; Ge, W., Multiple solutions of impulsive Sturm-Liouville boundary value problem via lower and upper solutions and variational methods, Journal of Mathematical Analysis and Applications, 387, 2, 475-489 (2012) · Zbl 1241.34032 [30] Zhang, D.; Dai, B., Existence of solutions for nonlinear impulsive differential equations with Dirichlet boundary conditions, Mathematical and Computer Modelling, 53, 5-6, 1154-1161 (2011) · Zbl 1217.34043 [31] Zhang, H.; Li, Z., Variational approach to impulsive differential equations with periodic boundary conditions, Nonlinear Analysis: Real World Applications, 11, 1, 67-78 (2010) · Zbl 1186.34089 [32] Ricceri, B., A further three critical points theorem, Nonlinear Analysis: Theory, Methods & Applications, 71, 9, 4151-4157 (2009) · Zbl 1187.47057 [33] Ricceri, B., A three critical points theorem revisited, Nonlinear Analysis: Theory, Methods & Applications, 70, 9, 3084-3089 (2009) · Zbl 1214.47079 [34] Ricceri, B., Existence of three solutions for a class of elliptic eigenvalue problems, Mathematical and Computer Modelling, 32, 11-13, 1485-1494 (2000) · Zbl 0970.35089 [35] Mawhin, J.; Willem, M., Critical Point Theory and Hamiltonian Systems, 74 (1989), New York, NY, USA: Springer, New York, NY, USA · Zbl 0676.58017 [36] Sun, J.; Chen, H.; Nieto, J. J., Infinitely many solutions for second-order Hamiltonian system with impulsive effects, Mathematical and Computer Modelling, 54, 1-2, 544-555 (2011) · Zbl 1225.37070 [37] Brezis, H.; Nirenberg, L., Remarks on finding critical points, Communications on Pure and Applied Mathematics, 44, 8-9, 939-963 (1991) · Zbl 0751.58006 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.