Chen, Yanping; Zhu, Kai \(L^p\) bounds for the commutators of oscillatory singular integrals with rough kernels. (English) Zbl 1472.42016 Abstr. Appl. Anal. 2014, Article ID 393147, 8 p. (2014). Summary: We establish the \(L^p\) boundedness for some commutators of oscillatory singular integrals with the kernel condition which was introduced by L. Grafakos and A. Stefanov [Indiana Univ. Math. J. 47, No. 2, 455–469 (1998; Zbl 0913.42014)]. Our theorems contain various conditions on the phase function. MSC: 42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.) 42B25 Maximal functions, Littlewood-Paley theory Keywords:method of rotations; Calderón-Zygmund singular integral operators; rough homogeneous kernels; maximal singular integrals Citations:Zbl 0913.42014 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Ricci, F.; Stein, E. M., Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, Journal of Functional Analysis, 73, 1, 179-194 (1987) · Zbl 0622.42010 · doi:10.1016/0022-1236(87)90064-4 [2] Hu, Y.; Pan, Y., Boundedness of oscillatory singular integrals on Hardy spaces, Arkiv för Matematik, 30, 2, 311-320 (1992) · Zbl 0779.42007 · doi:10.1007/BF02384877 [3] Lu, S.; Zhang, Y., Criterion on \(L^p\)-boundedness for a class of oscillatory singular integrals with rough kernels, Revista Matemática Iberoamericana, 8, 201-218 (1992) · Zbl 0786.42007 [4] Ojanen, H., Weighted estimates for rough oscillatory singular integrals, Journal of Fourier Analysis and Applications, 6, 4, 427-436 (2000) · Zbl 0956.42009 · doi:10.1007/BF02510147 [5] Fan, D.; Pan, Y., Singular integral operators with rough kernels supported by subvarieties, American Journal of Mathematics, 119, 4, 799-839 (1997) · Zbl 0899.42002 · doi:10.1353/ajm.1997.0024 [6] Grafakos, L.; Stefanov, A., \(L^p\) bounds for singular integrals and maximal singular integrals with rough kernels, Indiana University Mathematics Journal, 47, 2, 455-469 (1998) · Zbl 0913.42014 · doi:10.1512/iumj.1998.47.1521 [7] Al-Qassem, H.; Al-Salman, A., Rough Marcinkiewicz integral operators, International Journal of Mathematics and Mathematical Sciences, 27, 8, 495-503 (2001) · Zbl 0995.42013 · doi:10.1155/S0161171201006548 [8] Al-Salman, A.; Pan, Y., Singular integrals with rough kernels, Canadian Mathematical Bulletin, 47, 1, 3-11 (2004) · Zbl 1057.42009 · doi:10.4153/CMB-2004-001-8 [9] Chen, J.; Fan, D.; Pan, Y., A note on a Marcinkiewicz integral operator, Mathematische Nachrichten, 227, 33-42 (2001) · Zbl 0994.42012 · doi:10.1002/1522-2616(200107)227:1<33::AID-MANA33>3.3.CO;2-S [10] Chen, D. X.; Lu, S. Z., \(L^p\) boundedness of parabolic Littlewood-Paley operator with rough kernel belonging to \(F(S^{n - 1})\), Acta Mathematica Scientia, 31, 343-350 (2011) · Zbl 1240.42097 [11] Chen, J.; Zhang, C., Boundedness of rough singular integral operators on the Triebel—Lizorkin spaces, Journal of Mathematical Analysis and Applications, 337, 2, 1048-1052 (2008) · Zbl 1213.42034 · doi:10.1016/j.jmaa.2007.04.026 [12] Fan, D.; Guo, K.; Pan, Y., A note of a rough singular integral operator, Mathematical Inequalities and Applications, 2, 1, 73-81 (1999) · Zbl 0929.42007 · doi:10.7153/mia-02-07 [13] Grafakos, L.; Honzik, P.; Ryabogin, D., On the \(p\)-independence boundedness property of Calderón-Zygmund theory, Journal für die Reine und Angewandte Mathematik, 602, 227-234 (2007) · Zbl 1183.42023 · doi:10.1515/CRELLE.2007.008 [14] Cheng, L. C.; Pan, Y., \(L^p\) bounds for singular integrals associated to surfaces of revolution, Journal of Mathematical Analysis and Applications, 265, 1, 163-169 (2002) · Zbl 0996.42008 · doi:10.1006/jmaa.2001.7710 [15] Fan, D.; Sato, S., A note on singular integrals associated with a variable surface of revolution, Mathematical Inequalities and Applications, 12, 2, 441-454 (2009) · Zbl 1161.42006 · doi:10.7153/mia-12-34 [16] Pan, Y.; Tang, L.; Yang, D., Boundedness of rough singular integrals associated with surfaces of revolution, Advances in Mathematics, 32, 6, 677-682 (2003) · Zbl 1481.42027 [17] Wu, H., \(L^p\) bounds for Marcinkiewicz integrals associated to surfaces of revolution, Journal of Mathematical Analysis and Applications, 321, 2, 811-827 (2006) · Zbl 1127.42019 · doi:10.1016/j.jmaa.2005.08.087 [18] Zhang, Y.; Chen, J.; Zhang, C., Boundedness of singular integrals along surfaces on Lebesgue spaces, Applied Mathematics-A Journal of Chinese Universities, 25, 2, 192-198 (2010) · Zbl 1240.42089 · doi:10.1007/s11766-010-2143-y [19] Hu, G., \(L^p(R^n)\) boundedness for the commutator of a homogeneous singular integral operator, Studia Mathematica, 154, 1, 13-27 (2003) · Zbl 1011.42009 · doi:10.4064/sm154-1-2 [20] Chen, Y.; Ding, Y., \(L^p\) bounds for the commutators of singular integrals and Maximal singular integrals with rough kernels, Transactions of the American Mathematical Society (2014) · Zbl 1322.42018 · doi:10.1090/S0002-9947-2014-06069-8 [21] Zhang, C.; Zhang, Y., Boundedness of oscillatory singular integral with rough kernels on Triebel-Lizorkin spaces, Applied Mathematics, 28, 1, 90-100 (2013) · Zbl 1289.42077 · doi:10.1007/s11766-013-3033-x [22] Hu, G., \(L^{\text{2}}(R^n)\) boundedness for the commutators of convolution operators, Nagoya Mathematical Journal, 163, 55-70 (2001) · Zbl 0998.42008 [23] Kim, W.; Wainger, S.; Wright, J.; Ziesler, S., Singular integrals and maximal functions associated to surfaces of revolution, Bulletin of the London Mathematical Society, 28, 3, 291-296 (1996) · Zbl 0893.42004 · doi:10.1112/blms/28.3.291 [24] Duoandikoetxea, J.; Rubio de Francia, J. L., Maximal and singular integral operators via Fourier transform estimates, Inventiones Mathematicae, 84, 3, 541-561 (1986) · Zbl 0568.42012 · doi:10.1007/BF01388746 [25] Bony, J., Calcul symbolique et propagation des singularities pour les equations aux derivees partielles non lineaires, Annales Scientifiques de l’École Normale Supérieure, 14, 2, 209-246 (1981) · Zbl 0495.35024 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.