Wang, Hongjun; Liu, Yongqi; Chen, Yongqiang The Cauchy problem for a fifth-order dispersive equation. (English) Zbl 1472.35340 Abstr. Appl. Anal. 2014, Article ID 404781, 8 p. (2014). Summary: This paper is devoted to studying the Cauchy problem for a fifth-order equation. We prove that it is locally well-posed for the initial data in the Sobolev space \(H^s(\mathbb{R})\) with \(s \geq 1 / 4\). We also establish the ill-posedness for the initial data in \(H^s(\mathbb{R})\) with \(s < 1 / 4\). Thus, the regularity requirement for the fifth-order dispersive equations \(s \geq 1 / 4\) is sharp. MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 35B65 Smoothness and regularity of solutions to PDEs 35A01 Existence problems for PDEs: global existence, local existence, non-existence 35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness 35R25 Ill-posed problems for PDEs Keywords:fifth-order equation × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Hakkaev, S.; Kirchev, K., Local well-posedness and orbital stability of solitary wave solutions for the generalized Camassa-Holm equation, Communications in Partial Differential Equations, 30, 4-6, 761-781 (2005) · Zbl 1076.35098 · doi:10.1081/PDE-200059284 [2] Liu, X. F.; Jin, Y. Y., The Cauchy problem of a shallow water equation, Acta Mathematica Sinica, 21, 2, 393-408 (2005) · Zbl 1095.35041 · doi:10.1007/s10114-004-0420-5 [3] Li, Y.; Yan, W.; Yang, X., Well-posedness of a higher order modified Camassa-Holm equation in spaces of low regularity, Journal of Evolution Equations, 10, 2, 465-486 (2010) · Zbl 1239.35141 · doi:10.1007/s00028-010-0057-z [4] Olson, E. A., Well posedness for a higher order modified Camassa-Holm equation, Journal of Differential Equations, 246, 10, 4154-4172 (2009) · Zbl 1170.35087 · doi:10.1016/j.jde.2008.12.001 [5] Wang, H.; Cui, S., Global well-posedness of the Cauchy problem of the fifth-order shallow water equation, Journal of Differential Equations, 230, 2, 600-613 (2006) · Zbl 1106.35068 · doi:10.1016/j.jde.2006.04.008 [6] Grunrock, A., New applications of the fourier restriction norm method to well-posedness problems for nonlinear evolution equations, [Doctoral Dissertation] (2002), University of Wuppertal [7] Grünrock, A., An improved local well-posedness result for the modified KdV equation, International Mathematics Research Notices, 61, 3287-3308 (2004) · Zbl 1072.35161 · doi:10.1155/S1073792804140981 [8] Kenig, C. E.; Ponce, G.; Vega, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Communications on Pure and Applied Mathematics, 46, 4, 527-620 (1993) · Zbl 0808.35128 · doi:10.1002/cpa.3160460405 [9] Kenig, C. E.; Ponce, G.; Vega, L., On the ill-posedness of some canonical dispersive equations, Duke Mathematical Journal, 106, 3, 617-633 (2001) · Zbl 1034.35145 · doi:10.1215/S0012-7094-01-10638-8 [10] Kenig, C. E.; Ponce, G.; Vega, L., A bilinear estimate with applications to the KdV equation, Journal of the American Mathematical Society, 9, 2, 573-603 (1996) · Zbl 0848.35114 · doi:10.1090/S0894-0347-96-00200-7 [11] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T., Sharp global well-posedness for KdV and modified KdV on \(R\) and \(T\), Journal of the American Mathematical Society, 16, 3, 705-749 (2003) · Zbl 1025.35025 · doi:10.1090/S0894-0347-03-00421-1 [12] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T., Global well-posedness for Schrödinger equations with derivative, SIAM Journal on Mathematical Analysis, 33, 3, 649-669 (2001) · Zbl 1002.35113 · doi:10.1137/S0036141001384387 [13] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T., Global well-posedness for KdV in Sobolev spaces of negative index, Electronic Journal of Differential Equations, 2001, 26, 1-7 (2001) · Zbl 0967.35119 [14] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T., Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation, Mathematical Research Letters, 9, 5-6, 659-682 (2002) · Zbl 1152.35491 · doi:10.4310/MRL.2002.v9.n5.a9 [15] Miura, R. M., The Korteweg-de Vries equation: a survey of results, SIAM Review, 18, 3, 412-459 (1976) · Zbl 0333.35021 · doi:10.1137/1018076 [16] Guo, Z., Global well-posedness of Korteweg-de Vries equation in \(H^{- 3 / 4}(R)\), Journal de Mathématiques Pures et Appliquées, 91, 6, 583-597 (2009) · Zbl 1173.35110 · doi:10.1016/j.matpur.2009.01.012 [17] Ionescu, A. D.; Kenig, C. E., Global well-posedness of the Benjamin-Ono equation in low-regularity spaces, Journal of the American Mathematical Society, 20, 3, 753-798 (electronic) (2007) · Zbl 1123.35055 · doi:10.1090/S0894-0347-06-00551-0 [18] Ionescu, A. D.; Kenig, C. E.; Tataru, D., Global well-posedness of the KP-I initial-value problem in the energy space, Inventiones Mathematicae, 173, 2, 265-304 (2008) · Zbl 1188.35163 · doi:10.1007/s00222-008-0115-0 [19] Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geometric and Functional Analysis, 3, 3, 209-262 (1993) · Zbl 0787.35098 · doi:10.1007/BF01895688 [20] Bejenaru, I.; Tao, T., Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation, Journal of Functional Analysis, 233, 1, 228-259 (2006) · Zbl 1090.35162 · doi:10.1016/j.jfa.2005.08.004 [21] Kenig, C. E.; Ponce, G.; Vega, L., The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Mathematical Journal, 71, 1, 1-21 (1993) · Zbl 0787.35090 · doi:10.1215/S0012-7094-93-07101-3 [22] Kenig, C. E.; Ponce, G.; Vega, L., Oscillatory integrals and regularity of dispersive equations, Indiana University Mathematics Journal, 40, 1, 33-69 (1991) · Zbl 0738.35022 · doi:10.1512/iumj.1991.40.40003 [23] Ginibre, J., Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d’espace (d’après Bourgain), Astérisque, 237, 163-187 (1996) · Zbl 0870.35096 [24] Tzvetkov, N., Remark on the local ill-posedness for KdV equation, Comptes Rendus de l’Académie des Sciences. Série I. Mathématique, 329, 12, 1043-1047 (1999) · Zbl 0941.35097 · doi:10.1016/S0764-4442(00)88471-2 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.