×

Nonlinear nanofluid flow over heated vertical surface with sinusoidal wall temperature variations. (English) Zbl 1470.76093

Summary: The nonlinear density temperature variations in two-dimensional nanofluid flow over heated vertical surface with a sinusoidal wall temperature are investigated. The model includes the effects of Brownian motion and thermophoresis. Using the boundary layer approximation, the two-dimensional momentum, heat, and mass transfer equations are transferred to nonlinear partial differential equations form and solved numerically using a new method called spectral local linearisation method. The effects of the governing parameters on the fluid properties and on the heat and nanomass transfer coefficients are determined and shown graphically.

MSC:

76R10 Free convection
80A19 Diffusive and convective heat and mass transfer, heat flow
76S05 Flows in porous media; filtration; seepage

Software:

Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Choi, S. U. S., Enhancing thermal conductivity of fluids with nanoparticles, Proceedings of the International Mechanical Engineering Congress and Exhibition, ASME
[2] Wong, K. V.; De Leon, O., Applications of nanofluids: current and future, Advances in Mechanical Engineering, 2010 (2010) · doi:10.1155/2010/519659
[3] Gbadeyan, J. A.; Olanrewaju, M. A.; Olanrewaju, P. O., Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition in the presence of magnetic field and thermal radiation, Australian Journal of Basic and Applied Sciences, 5, 9, 1323-1334 (2011)
[4] Sharma, R.; Ishak, A.; Pop, I., Partial slip flow and heat transfer over a stretching sheet in a nanofluid, Mathematical Problems in Engineering, 2013 (2013) · doi:10.1155/2013/724547
[5] Ding, Y.; Chen, H.; Wang, L., Heat transfer intensification using nanofluids, Kona, 25, 23-38 (2007)
[6] Buongiorno, J., Convective transport in nanofluids, Journal of Heat Transfer, 128, 3, 240-250 (2006) · doi:10.1115/1.2150834
[7] Kuznetsov, A. V.; Nield, D. A., Natural convective boundary-layer flow of a nanofluid past a vertical plate, International Journal of Thermal Sciences, 49, 2, 243-247 (2010) · doi:10.1016/j.ijthermalsci.2009.07.015
[8] Nield, D. A.; Kuznetsov, A. V., The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid, International Journal of Heat and Mass Transfer, 52, 25-26, 5792-5795 (2009) · Zbl 1177.80046 · doi:10.1016/j.ijheatmasstransfer.2009.07.024
[9] Khan, W. A.; Pop, I., Boundary-layer flow of a nanofluid past a stretching sheet, International Journal of Heat and Mass Transfer, 53, 11-12, 2477-2483 (2010) · Zbl 1190.80017 · doi:10.1016/j.ijheatmasstransfer.2010.01.032
[10] Ho, C. J.; Liu, W. K.; Chang, Y. S.; Lin, C. C., Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study, International Journal of Thermal Sciences, 49, 8, 1345-1353 (2010) · doi:10.1016/j.ijthermalsci.2010.02.013
[11] Khan, W. A.; Aziz, A., Double-diffusive natural convective boundary layer flow in a porous medium saturated with a nanofluid over a vertical plate: Prescribed surface heat, solute and nanoparticle fluxes, International Journal of Thermal Sciences, 50, 11, 2154-2160 (2011) · doi:10.1016/j.ijthermalsci.2011.05.022
[12] Rashad, A. M.; El-Hakiem, M. A.; Abdou, M. M. M., Natural convection boundary layer of a non-Newtonian fluid about a permeable vertical cone embedded in a porous medium saturated with a nanofluid, Computers & Mathematics with Applications, 62, 8, 3140-3151 (2011) · Zbl 1232.76004 · doi:10.1016/j.camwa.2011.08.027
[13] Aziz, A.; Khan, W. A.; Pop, I., Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nanofluid containing gyrotactic microorganisms, International Journal of Thermal Sciences, 56, 48-57 (2012) · doi:10.1016/j.ijthermalsci.2012.01.011
[14] Rana, P.; Bè, R.; Bég, O. A., Numerical solution for mixed convection boundary layer flow of a nanofluid along an inclined plate embedded in a porous medium, Computers and Mathematics with Applications, 64, 9, 2816-2832 (2012) · Zbl 1268.76061 · doi:10.1016/j.camwa.2012.04.014
[15] Hajipour, M.; Molaei Dehkordi, A., Analysis of nanofluid heat transfer in parallel-plate vertical channels partially filled with porous medium, International Journal of Thermal Sciences, 55, 103-113 (2012) · doi:10.1016/j.ijthermalsci.2011.12.018
[16] Chand, R.; Rana, G. C., On the onset of thermal convection in rotating nanofluid layer saturating a Darcy-Brinkman porous medium, International Journal of Heat and Mass Transfer, 55, 21-22, 5417-5424 (2012) · doi:10.1016/j.ijheatmasstransfer.2012.04.043
[17] Korovkin, V. N.; Andrievskii, A. P., Free convection with a nonlinear dependence of density on temperature: plane problems, Journal of Engineering Physics and Thermophysics, 73, 2, 381-386 (2000)
[18] Vajravelu, K.; Cannon, J. R.; Leto, J.; Semmoum, R.; Nathan, S.; Draper, M.; Hammock, D., Nonlinear convection at a porous flat plane with application to heat transfer from a dike, Journal of Mathematical Analysis and Applications, 277, 2, 609-623 (2003) · Zbl 1053.76064 · doi:10.1016/S0022-247X(02)00634-0
[19] H. Barrow; T. L. S. Rao, The effect of variable beta on free convection, British Chemical Engineering, 16, 704-709 (1971)
[20] Streeter, V. L., Handbook of Fluid Dynamics, 6 (1961), New York, NY, USA: McGraw-Hill, New York, NY, USA
[21] Vajravelu, K.; Sastri, K. S., Fully developed laminar free convection flow between two parallel vertical walls-I, International Journal of Heat and Mass Transfer, 20, 6, 655-660 (1977) · doi:10.1016/0017-9310(77)90052-7
[22] Prasad, K. V.; Vajravelu, K.; Van Gorder, R. A., Non-Darcian flow and heat transfer along a permeable vertical surface with nonlinear density temperature variation, Acta Mechanica, 220, 1-4, 139-154 (2011) · Zbl 1385.76013 · doi:10.1007/s00707-011-0474-2
[23] Motsa, S. S.; Awad, F. G.; Makukula, Z. G.; Sibanda, P., The spectral homotopy analysis method extended to systems of partial differential equations, Abstract and Applied Analysis, 2014 (2014) · Zbl 1468.65215 · doi:10.1155/2014/241594
[24] Ostrach, S., An analysis of laminar free-convection flow and heat transfer about a flat plate parallel to the direction of the generating body force, NACA, 2635 (1952)
[25] Sparrow, E. M.; Gregg, J. L., Similar solution for free convection from a non-isothermal vertical plate, Journal of Heat Transfer, 80, 379-384 (1958)
[26] Rees, D. A. S., The effect of steady streamwise surface temperature variations on vertical free convection, International Journal of Heat and Mass Transfer, 42, 13, 2455-2464 (1999) · Zbl 0977.76080 · doi:10.1016/S0017-9310(98)00304-4
[27] Pop, I.; Ingham, D. B., Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media (2001), Oxford, UK: Pergamon, Oxford, UK
[28] Roy, N. C.; Hossain, M. A., Numerical solution of a steady natural convection flow from a vertical plate with the combined effects of streamwise temperature and species concentration variations, Heat and Mass Transfer, 46, 5, 509-522 (2010) · doi:10.1007/s00231-010-0591-9
[29] Saha, S. C.; Patterson, J. C.; Lei, C., Natural convection and heat transfer in attics subject to periodic thermal forcing, International Journal of Thermal Sciences, 49, 10, 1899-1910 (2010) · doi:10.1016/j.ijthermalsci.2010.05.010
[30] Molla, M. M.; Saha, S. C.; Hossain, M. A., Radiation effect on free convection laminar flow along a vertical flat plate with streamwise sinusoidal surface temperature, Mathematical and Computer Modelling, 53, 5-6, 1310-1319 (2011) · Zbl 1217.76070 · doi:10.1016/j.mcm.2010.12.017
[31] Rana, P.; Bhargava, R., Flow and heat transfer analysis of a nanofluid along a vertical flat plate with non-uniform heating using fem: effect of nanoparticle diameter, International Journal of Applied Physics and Mathematics, 1, 171-176 (2011)
[32] Motsa, S. S., A new spectral local linearization method for nonlinear boundary layer flow problems, Journal of Applied Mathematics, 2013 (2013) · Zbl 1397.65119 · doi:10.1155/2013/423628
[33] Motsa, S. S.; Makukula, Z. G.; Shateyi, S., Spectral local linearisation approach for natural convection boundary layer flow, Mathematical Problems in Engineering, 2013 (2013) · Zbl 1299.76057 · doi:10.1155/2013/765013
[34] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics. Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics (1988), Berlin , Germany: Springer, Berlin , Germany · Zbl 0658.76001 · doi:10.1007/978-3-642-84108-8
[35] Trefethen, L. N., Spectral Methods in MATLAB (2000), New York, NY, USA: SIAM, New York, NY, USA · Zbl 0953.68643
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.