×

Haar wavelet method for the system of integral equations. (English) Zbl 1470.65223

Summary: We employed the Haar wavelet method to find numerical solution of the system of Fredholm integral equations (SFIEs) and the system of Volterra integral equations (SVIEs). Five test problems, for which the exact solution is known, are considered. Comparison of the results is obtained by the Haar wavelet method with the exact solution.

MSC:

65R20 Numerical methods for integral equations
45F05 Systems of nonsingular linear integral equations

References:

[1] Ray, S. S.; Sahu, P. K., Numerical methods for solving Fredholm integral equations of second kind, Abstract and Applied Analysis, 2013 (2013) · Zbl 1291.65389 · doi:10.1155/2013/426916
[2] Sadeghi Goghary, H.; Javadi, S. H.; Babolian, E., Restarted Adomian method for system of nonlinear Volterra integral equations, Applied Mathematics and Computation, 161, 3, 745-751 (2005) · Zbl 1061.65148 · doi:10.1016/j.amc.2003.12.072
[3] Maleknejad, K.; Aghazadeh, N.; Rabbani, M., Numerical solution of second kind Fredholm integral equations system by using a Taylor-series expansion method, Applied Mathematics and Computation, 175, 2, 1229-1234 (2006) · Zbl 1093.65124 · doi:10.1016/j.amc.2005.08.039
[4] Rabbani, M.; Maleknejad, K.; Aghazadeh, N., Numerical computational solution of the Volterra integral equations system of the second kind by using an expansion method, Applied Mathematics and Computation, 187, 2, 1143-1146 (2007) · Zbl 1114.65371 · doi:10.1016/j.amc.2006.09.012
[5] Maleknejad, K.; Mirzaee, F., Numerical solution of linear Fredholm integral equations system by rationalized Haar functions method, International Journal of Computer Mathematics, 80, 11, 1397-1405 (2003) · Zbl 1045.65115 · doi:10.1080/0020716031000148214
[6] Javidi, M.; Golbabai, A., A numerical solution for solving system of Fredholm integral equations by using homotopy perturbation method, Applied Mathematics and Computation, 189, 2, 1921-1928 (2007) · Zbl 1243.65158 · doi:10.1016/j.amc.2006.12.070
[7] de Bonis, M. C.; Laurita, C., Numerical treatment of second kind Fredholm integral equations systems on bounded intervals, Journal of Computational and Applied Mathematics, 217, 1, 64-87 (2008) · Zbl 1155.65112 · doi:10.1016/j.cam.2007.06.014
[8] Hariharan, G.; Kannan, K., An overview of Haar wavelet method for solving differential and integral equations, World Applied Sciences Journal, 23, 12, 1-14 (2013) · doi:10.5829/idosi.wasj.2013.23.12.423
[9] Hariharan, G.; Kannan, K., Review of wavelet methods for the solution of reaction-diffusion problems in science and engineering, Applied Mathematical Modelling, 38, 3, 799-813 (2014) · Zbl 1427.65429 · doi:10.1016/j.apm.2013.08.003
[10] Rashidinia, J.; Zarebnia, M., Convergence of approximate solution of system of Fredholm integral equations, Journal of Mathematical Analysis and Applications, 333, 2, 1216-1227 (2007) · Zbl 1120.65137 · doi:10.1016/j.jmaa.2006.12.016
[11] Ivaz, K.; Mostahkam, B. S., Newton-Tau numerical solution of a system of nonlinear Fredholm integral equations of second kind, Applied and Computational Mathematics, 5, 2, 201-208 (2006) · Zbl 1209.65148
[12] Babolian, E.; Mordad, M., A numerical method for solving systems of linear and nonlinear integral equations of the second kind by hat basis functions, Computers and Mathematics with Applications, 62, 1, 187-198 (2011) · Zbl 1228.65243 · doi:10.1016/j.camwa.2011.04.066
[13] Maleknejad, K.; Shahrezaee, M.; Khatami, H., Numerical solution of integral equations system of the second kind by block-pulse functions, Applied Mathematics and Computation, 166, 1, 15-24 (2005) · Zbl 1073.65149 · doi:10.1016/j.amc.2004.04.118
[14] Maleknejad, K.; Salimi Shamloo, A., Numerical solution of singular Volterra integral equations system of convolution type by using operational matrices, Applied Mathematics and Computation, 195, 2, 500-505 (2008) · Zbl 1132.65117 · doi:10.1016/j.amc.2007.05.001
[15] Zedan, H. A.; El Adrous, E., The application of the homotopy perturbation method and the homotopy analysis method to the generalized Zakharov equations, Abstract and Applied Analysis, 2012 (2012) · Zbl 1246.65193 · doi:10.1155/2012/561252
[16] Sorkun, H. H.; Yalçinbaş, S., Approximate solutions of linear Volterra integral equation systems with variable coefficients, Applied Mathematical Modelling, 34, 11, 3451-3464 (2010) · Zbl 1201.45001 · doi:10.1016/j.apm.2010.02.034
[17] Biazar, J.; Eslami, M., Modified HPM for solving systems of Volterra integral equations of the second kind, Journal of King Saud University (Science), 23, 1, 35-39 (2011) · doi:10.1016/j.jksus.2010.06.004
[18] Berenguer, M. I.; Gámez, D.; Garralda-Guillem, A. I.; Ruiz Galán, M.; Serrano Pérez, M. C., Biorthogonal systems for solving Volterra integral equation systems of the second kind, Journal of Computational and Applied Mathematics, 235, 7, 1875-1883 (2011) · Zbl 1215.65192 · doi:10.1016/j.cam.2010.07.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.