## Approximate analytic solutions of transient nonlinear heat conduction with temperature-dependent thermal diffusivity.(English)Zbl 1469.80005

Summary: A new approach for generating approximate analytic solutions of transient nonlinear heat conduction problems is presented. It is based on an effective combination of Lie symmetry method, homotopy perturbation method, finite element method, and simulation based error reduction techniques. Implementation of the proposed approach is demonstrated by applying it to determine approximate analytic solutions of real life problems consisting of transient nonlinear heat conduction in semi-infinite bars made of stainless steel AISI 304 and mild steel. The results from the approximate analytical solutions and the numerical solution are compared indicating good agreement.

### MSC:

 80A19 Diffusive and convective heat and mass transfer, heat flow 35A30 Geometric theory, characteristics, transformations in context of PDEs
Full Text:

### References:

 [1] Morton, K. W.; Mayers, D. F., Numerical Solution of Partial Differential Equations: An Introduction (1994), New York, NY, USA: Cambridge University Press, New York, NY, USA · Zbl 0811.65063 [2] Blobner, J.; Białecki, R. A.; Kuhn, G., Boundary-element solution of coupled heat conduction-radiation problems in the presence of shadow zones, Numerical Heat Transfer B: Fundamentals, 39, 5, 451-478 (2001) · doi:10.1080/104077901750188840 [3] Chen, B.; Gu, Y.; Guan, Z.; Zhang, H., Nonlinear transient heat conduction analysis with precise time integration method, Numerical Heat Transfer B, 40, 4, 325-341 (2001) · doi:10.1080/104077901317091712 [4] Asllanaj, F.; Milandri, A.; Jeandel, G.; Roche, J. R., A finite difference solution of non-linear systems of radiative-conductive heat transfer equations, International Journal for Numerical Methods in Engineering, 54, 11, 1649-1668 (2002) · Zbl 1013.80009 · doi:10.1002/nme.490 [5] Fic, A.; Białecki, R. A.; Kassab, A. J., Solving transient nonlinear heat conduction problems by proper orthogonal decomposition and the finite-element method, Numerical Heat Transfer B: Fundamentals, 48, 2, 103-124 (2005) · doi:10.1080/10407790590935920 [6] Ames, W. F., Nonlinear Partial Differential Equations in Engineering, 1 (1965), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0176.39701 [7] Bluman, G. W.; Anco, S., Symmetry and Integration Methods for Differential Equations (2002), New York, NY, USA: Springer, New York, NY, USA · Zbl 1013.34004 [8] Ibragimov, N. H., Elementary Lie Group Analysis and Ordinary Differential Equations, 4 (1999), Chichester, UK: John Wiley & Sons, Chichester, UK · Zbl 1047.34001 [9] Olver, P. J., Applications of Lie Groups to Differential Equations (1986), New York, NY, USA: Springer, New York, NY, USA · Zbl 0588.22001 [10] Ovsiannikov, L. V., Group Analysis of Differential Equations (1982), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0485.58002 [11] He, J. H., Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering, 178, 3-4, 257-262 (1999) · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3 [12] He, J., Bookkeeping parameter in perturbation methods, International Journal of Nonlinear Sciences and Numerical Simulation, 2, 3, 257-264 (2001) · Zbl 1072.34508 · doi:10.1515/IJNSNS.2001.2.3.257 [13] He, J.-H., Addendum: new interpretation of homotopy perturbation method, International Journal of Modern Physics B, 20, 18, 2561-2568 (2006) · doi:10.1142/S0217979206034819 [14] Azad, H.; Mustafa, M. T.; Arif, A. F. M., Analytic solutions of initial-boundary-value problems of transient conduction using symmetries, Applied Mathematics and Computation, 215, 12, 4132-4140 (2010) · Zbl 1187.35005 · doi:10.1016/j.amc.2009.12.016 [15] Dresner, L., Similarity Solutions of Nonlinear Partial Differential Equations. Similarity Solutions of Nonlinear Partial Differential Equations, Research Notes in Mathematics Series, 88 (1983), Longman · Zbl 0526.35002 [16] Aziz, A., A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition, Communications in Nonlinear Science and Numerical Simulation, 14, 4, 1064-1068 (2009) · doi:10.1016/j.cnsns.2008.05.003 [17] Mukhopadhyay, S.; Bhattacharyya, K.; Layek, G. C., Steady boundary layer flow and heat transfer over a porous moving plate in presence of thermal radiation, International Journal of Heat and Mass Transfer, 54, 13-14, 2751-2757 (2011) · Zbl 1217.80069 · doi:10.1016/j.ijheatmasstransfer.2011.03.017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.